113 research outputs found

    Soil carbon stocks vary across geomorphic settings in Australian temperate tidal marsh ecosystems

    Get PDF
    Tidal marshes rank among the ecosystems with the highest capacity to sequester and store organic carbon (Corg) on earth. To inform conservation of coastal vegetated ecosystems for climate change mitigation, this study investigated the factors driving variability in carbon storage. We estimated soil Corg stocks in tidal marshes across temperate Western Australia and assessed differences among geomorphic settings (marine and fluvial deltas, and mid-estuary) and vegetation type (Sarcocornia quinqueflora and Juncus kraussii) linked to soil biogeochemistry. Soil Corg stocks within fluvial and mid-estuary settings were significantly higher (209 ± 14 and 211 ± 20 Mg Corg ha−1, respectively; 1-m-thick soils) than in marine counterparts (156 ± 12 Mg Corg ha−1), which can be partially explained by higher preservation of soil Corg in fluvial and mid-estuary settings rich in fine-grained ( \u3c 0.063 mm) sediments (49 ± 3% and 47 ± 4%, respectively) compared to marine settings (23 ± 4%). Soil Corg stocks were not significantly different between S. quinqueflora and J. kraussii marshes (185 ± 13 and 202 ± 13 Mg Corg ha−1, respectively). The higher contribution of tidal marsh plus supratidal vegetation in fluvial (80%) and intermediate (76%) compared to marine (57%) settings further explains differences in soil Corg stocks. The estimated soil Corg stocks in temperate Western Australia’s tidal marshes (57 Tg Corg within ~ 3000 km2 extent) correspond to about 2% of worldwide tidal marsh soil Corg stocks. The results obtained identify global drivers of soil Corg storage in tidal marshes and can be used to target hot spots for climate change mitigation based on tidal marsh conservation

    Antitumor and immunostimulatory activities of a genotype V recombinantattenuated veterinary Newcastle disease virus vaccine

    Get PDF
    "Antitumor conventional treatments including chemo/radiotherapy result in several side effects and non-specificity. Therapies including the use of oncolytic viruses, particularly the Newcastle disease virus (NDV), have emerged as an attractive alternative due to their capacity to kill cancer cells directly or through stimulation of the immune system. In the present study, a commercial vaccine composed of a recombinant attenuated NDV strain P05 (rNDV-P05) was assessed for antitumor and immunostimulatory activity. Firstly, hemagglutination activity was evaluated at different pH and temperature conditions. Then, cancer cell lines and peripheral blood mononuclear cells (PBMC) were co-cultured with or without rNDV-P05 and cytoplasmic nucleosomes were measured by enzyme-linked immunosorbent assay (ELISA) as an apoptosis indicator. Antitumor cytokines produced by PBMC in response to the virus were analyzed by ELISA and reverse transcription quantitative polymerase chain reaction. Characterization ofrNDV-P05 indicates that the virus is slightly sensible to acid and basic pH, and stable at temperatures no greater than 42 degrees C. The majority of cell lines developed apoptosis in co-culture with rNDV-P05 in a dose-time dependent manner. The highest level of HeLa, HCC1954 and HepG2 cell apoptosis was at 48 h/50 hemagglutination units (HU), and HL-60 was 24 h/50 HU.A549 cell line and PBMC did not show sensitivity to apoptosis by the virus. PBMC from healthy donors stimulated with the rNDV-P05 increased significantly the levels of interferon (IFN)-alpha, IFN-gamma, tumor necrosis factor (TNF)-alpha and soluble TNF-related apoptosis-inducing I igand in culture supernatants, as well as their mRNA expression. These results demonstrate that the pro-apoptotic effect ofrNDV-P05 and its magnitude is specific to particular tumor cell lines and is not induced on PBMC; and the virusstimulates the expression of several key antitumor cytokines. This study promotes the use of rNDV-P05 in an alternate application of different viral strains during virotherapy with NDV.

    Evaluación del potencial energético de los recursos biomásicos en Costa Rica

    Get PDF
    En este documento se presentan las estimaciones del potencial técnico de la energía que se puede obtener en Costa Rica a través de ciertos tipos de biomasa. Los potenciales se estimaron utilizando la plataforma geoespacial para evaluar el potencial energético de los recursos biomásicos de los países del Sistema de la Integración Centroamericana (SICA), una iniciativa de la CEPAL llevada a cabo en colaboración con el Centro de Investigaciones en Geografía Ambiental (CIGA) de la Universidad Nacional Autónoma de México (UNAM). Los potenciales obtenidos mediante información geoespacial para algunos tipos de bioenergía constituyen una referencia para tomar decisiones informada sobre el uso de ciertos recursos biomásicos como fuente de energía en Costa Rica, con el fin de aumentar la participación de los recursos renovables en la matriz energética del país, en línea con la meta 2 del ODS 7 de la Agenda 2030 para el Desarrollo Sostenible de las Naciones Unidas.Resumen .-- Presentación .-- Introducción .-- Capítulo I. Marco conceptual .-- Capítulo II. Análisis del perfil de país para el aprovechamiento energético de la biomasa .-- Capítulo III. Metodología .-- Capítulo IV. Resultados de las estimaciones de la oferta potencial de biomasa .-- Capítulo V. Oferta potencial de biomasa y análisis de la producción actual de electricidad .-- Capítulo VI. Conclusiones y reflexiones finales

    Global dataset on seagrass meadow structure, biomass and production

    Get PDF
    Seagrass meadows provide valuable socio-ecological ecosystem services, including a key role in climate change mitigation and adaption. Understanding the natural history of seagrass meadows across environmental gradients is crucial to deciphering the role of seagrasses in the global ocean. In this data collation, spatial and temporal patterns in seagrass meadow structure, biomass and production data are presented as a function of biotic and abiotic habitat characteristics. The biological traits compiled include measures of meadow structure (e.g. percent cover and shoot density), biomass (e.g. above-ground biomass) and production (e.g. shoot production). Categorical factors include bioregion, geotype (coastal or estuarine), genera and year of sampling. This dataset contains data extracted from peer-reviewed publications published between 1975 and 2020 based on a Web of Science search and includes 11 data variables across 12 seagrass genera. The dataset excludes data from mesocosm and field experiments, contains 14271 data points extracted from 390 publications and is publicly available on the PANGAEA® data repository (10.1594/PANGAEA.929968; Strydom et al., 2021). The top five most studied genera are Zostera, Thalassia, Cymodocea, Halodule and Halophila (84 % of data), and the least studied genera are Phyllospadix, Amphibolis and Thalassodendron (2.3 % of data). The data hotspot bioregion is the Tropical Indo-Pacific (25 % of data) followed by the Tropical Atlantic (21 %), whereas data for the other four bioregions are evenly spread (ranging between 13 and 15 % of total data within each bioregion). From the data compiled, 57 % related to seagrass biomass and 33 % to seagrass structure, while the least number of data were related to seagrass production (11 % of data). This data collation can inform several research fields beyond seagrass ecology, such as the development of nature-based solutions for climate change mitigation, which include readership interested in blue carbon, engineering, fisheries, global change, conservation and policy

    Factors Determining Seagrass Blue Carbon Across Bioregions and Geomorphologies

    Get PDF
    Este artículo contiene 15 páginas, 6 figuras, 1 tabla.Seagrass meadows rank among the most significant organic carbon (Corg) sinks on earth. We examined the variability in seagrass soil Corg stocks and composition across Australia and identified the main drivers of variability, applying a spatially hierarchical approach that incorporates bioregions and geomorphic settings. Top 30 cm soil Corg stocks were similar across bioregions and geomorphic settings (min-max: 20–26 Mg Corg ha−1), but meadows formed by large species (i.e., Amphibolis spp. and Posidonia spp.) showed higher stocks (24–29 Mg Corg ha−1) than those formed by smaller species (e.g., Halodule, Halophila, Ruppia, Zostera, Cymodocea, and Syringodium; 12–21 Mg Corg ha−1). In temperate coastal meadows dominated by large species, soil Corg stocks mainly derived from seagrass Corg (72 ± 2%), while allochthonous Corg dominated soil Corg stocks in meadows formed by small species in temperate and tropical estuarine meadows (64 ± 5%). In temperate coastal meadows, soil Corg stocks were enhanced by low hydrodynamic exposure associated with high mud and seagrass Corg contents. In temperate estuarine meadows, soil Corg stocks were enhanced by high contributions of seagrass Corg, low to moderate solar radiation, and low human pressure. In tropical estuarine meadows formed by small species, large soil Corg stocks were mainly associated with low hydrodynamic energy, low rainfall, and high solar radiation. These results showcase that bioregion and geomorphic setting are not necessarily good predictors of soil Corg stocks and that site-specific estimates based on local environmental factors are needed for Blue Carbon projects and greenhouse gases accounting purposes.This study was delivered as part of the Pilot Projects program of the Land Restoration Fund, supported by the Queensland Government, Deakin University, The University of Queensland, James Cook University, CSIRO, HSBC, Qantas, Australian Government Department of Industry, Science, Energy and Resources, NQ Dry Tropics, Great Barrier Reef Foundation and Greencollar. We are thankful for the funding provided by Deakin University (to PIM and MDPC), Qantas (to PIM and MDPC) and HSBC (to PIM and MDPC). MR, PY, PIM were supported through ARC Linkage grant LP160100492, and PIM and CEL were supported through ARC Linkage grant LP160100242. NJW is funded through Australian Government National Environment Science Program (Tropical Water Quality Hub). MFA was funded through an Advance Queensland Industry Research Fellowship, Queensland Government. CS was funded by ECU Higher Degree by Research ScholarshipPeer reviewe

    Australian vegetated coastal ecosystems as global hotspots for climate change mitigation

    Get PDF
    Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5–11% of the C stored in VCE globally (70–185 Tg C in aboveground biomass, and 1,055–1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1–3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12–21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions
    corecore