101 research outputs found

    Molecular mechanisms of vitamin D plus Bisphenol A effects on adipogenesis in human adipose-derived mesenchymal stem cells

    Get PDF
    Background: Obesity is considered a major health concern and mounting evidence suggests that the exposure to environmental endocrine disruptors, including Bisphenol-A (BPA), may enhance the risk to develop the disease. Moreover, growing documents propose that the vitamin D may contribute to adipogenic signaling and lipid accumulation during adipocyte differentiation. We focused on the molecular mechanism of vitamin D and BPA in human adipose-derived mesenchymal stem cells (hADMSCs) which vitamin D and BPA may influence adipose tissue development and function. Methods: Human adipose-derived mesenchymal stem cells were cultured for 14 days in lipogenic differentiation media containing continuous concentrations of vitamin D plus BPA (0.1 nM or 10 nM). The expression of adipogenic markers including the peroxisome proliferator-activated receptor γ (PPARγ), CCAAT-enhancer-binding protein α (C/EBP α) CCAAT-enhancer-binding protein β (C/EBP β), fatty acid synthase (FASN), lipoprotein lipase (LPL), sterol regulatory element-binding protein-1c (SREBP1c), insulin-induced gene-2 (INSIG2), vitamin D receptor (VDR), estrogen receptor-beta (ER-β), fatty acid-binding protein-4 (FABP4), and glucose transporter-4 (GLUT4) was measured using Quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA). Lipid accumulation was visualized with staining with Oil Red O. Results: In the morphological assessment of mesenchymal stem cells treated with a concentration of 10 nM vitamin D plus BPA, more lipid accumulations were observed in comparison with the group with 0.1 nM concentration. Treatment of hADMSCs with vitamin D plus BPA (0.1 nM) significantly inhibited the induction of PPARγ, C/EBP β, C/EBP α, and FASN related to adipocyte differentiation and development. However, the exposure of cells to the concentration of 10 nM vitamin D plus BPA induced the expression of these genes associated to the adipogenesis. The remarkable increase in the level of SREBP1c was associated to the suppression of INSIG2 in treated preadipocytes with 10 nM vitamin D plus BPA. Our findings showed that the expression of VDR, ERβ, GLUT4, and FABP4 were upregulated through differentiation with the highest concentrations in 0.1 nM vitamin D plus BPA group for VDR, ERβ, and GLUT4. Conclusions: Vitamin D plus BPA at concentration of 10 nM boosted the adipogenesis during the critical stages of adipocytes development, whereas it seems to inhibit this process at concentration of 0.1 nM. © 2021, The Author(s)

    Correction to: 1,25-Dihydroxyvitamin D3 modulates adipogenesis of human adipose-derived mesenchymal stem cells dose-dependently (Nutrition & Metabolism, (2021), 18, 1, (29), 10.1186/s12986-021-00561-4)

    Get PDF
    Following publication of the original article 1, the authors identified an error in the affiliation of Dr. Mehdi Hedayati. © 2021, The Author(s)

    Bisphenol A enhances adipogenic signaling pathways in human mesenchymal stem cells

    Get PDF
    Background: The endocrine disruptor Bisphenol-A (BPA), has been involved in dysregulating adipose tissue development and increasing the risk of obesity. The objective of this experiment was to investigate whether treatment of human mesenchymal stem cells with BPA could modulate adipogenesis and adipocyte differentiation. Methods: In this experimental study, the human adipose-derived mesenchymal stem cells (hASCs) were cultured for 2 weeks with continuous exposure to 10- 10 M or 10- 8 M concentrations of BPA. The extent of triglyceride accumulation was visualized by Oil Red O staining. To evaluate BPA effect on the expression levels of key adipogenic trascripotion factors and proteins, we used Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and ELISA. Results: The results presented a dose-dependent triglyceride accumulation in treated cells with BPA. Additionally, we observed that BPA induced transcription of the Peroxisome proliferator-activated receptor-gamma (PPARγ), CCAAT-enhancer-binding protein-alpha (C/EBPα), CCAAT-enhancer-binding protein-beta (C/EBPβ), sterol regulatory element-binding protein-1c (SREBP1c), Fatty acid synthase (FASN), and lipoprotein lipase (LPL); BPA suppressed the expression of Fatty acid binding protein-4 (FABP4) and Estrogen receptor-beta (ERβ). Conclusions: Our findings supported the hypothesis that BPA enhances adipogenic differentiation thereby may play a role in development of obesity and dysregulation of metabolic homoeostasis. © 2020 The Author(s)

    1,25-Dihydroxyvitamin D3 modulates adipogenesis of human adipose-derived mesenchymal stem cells dose-dependently

    Get PDF
    Purpose: 1,25-dihydroxyvitamin D3 may regulate adipogenesis in adipocytes in-vitro, but little is known about possible molecular mechanisms related to the inhibitory effect of 1,25-dihydroxyvitamin D3 on adipogenesis in humans� adipose tissue. Methodology: In this study, human adipose-derived mesenchymal stem cells (hASCs) were cultured for 14 days in adipogenic differentiation media containing concentrations of 1,25-dihydroxyvitamin D3 (10�10�10�8 M). The extent of adipogenic differentiation in ASCs was assessed by Oil Red O staining and quantitative polymerase chain reaction (PCR) to determine expression levels of key adipogenic markers. Results: Our results showed that vitamin D receptor (VDR), as a mediator of most actions of 1,25-dihydroxyvitamin D3, glucose trasporter-4 (GLUT4),and fatty acid binding protein-4 (FABP4) was expressed in vitamin D-treated hASCs. However, the protein level of these markers was lower than the control group. Treatment of human preadipocytes with 1,25-dihydroxyvitamin D3 significantly altered expression of adipogenic markers and triglyceride accumulation in a dose-dependent manner. 1,25-dihydroxyvitamin D3 at concentration of 10�8 M enhanced expression of sterol regulatory element-binding protein-1c (SREBP1c), CCAAT-enhancer-binding protein-β (C/EBPβ), a mitotic clonal expansion, peroxisome proliferator-activated receptor-gamma (PPARγ), fatty acid synthase (FASN), a marker of de novo lipogenesis,and lipoprotein lipase (LPL). Conclusion: Our findings revealed that 1,25-dihydroxyvitamin D3 may provoke adipocyte development in critical periods of adipogenesis at concentration of 10�8 M, thereby leading to a greater risk of obesity in adulthood and an augmented risk of obesity-related diseases including diabetes, cardiovascular diseases, and some cancers. © 2021, The Author(s)

    Long-term outcome of posterior spinal fusion for the correction of adolescent idiopathic scoliosis

    Get PDF
    Background: Adolescent idiopathic scoliosis (AIS) is the most common form of idiopathic scoliosis, and surgery is considered as one of the therapeutic options. However, it is associated with a variety of irreversible complications, in spite of the benefits it provides. Here, we evaluated the long-term outcome of posterior spinal fusion (PSF) of AIS to shed more light on the consequences of this surgery. Methods: In a cross-sectional study, a total of 42 AIS patients who underwent PSF surgery were radiographically and clinically inspected for the potential post-operative complications. Radiographic assessments included the device failure, union status, and vertebral tilt below the site of fusion. Clinical outcomes were evaluated using the Oswestry disability index (ODI) and visual analogue scale (VAS). Results: The mean age of the surgery was 14.4 ± 5.1 years. The mean follow-up of the patients was 5.6 ± 3.2 years. Complete union was observed in all patients, and no device failure was noticed. Pre- and post-operative vertebral tilt below the site of fusion were 11.12° ± 7.92° and 6.21° ± 5.73°, respectively (p < 0.001). The mean post-operative ODI was 16.7 ± 9.8. The mean post-operative VAS was 2.1 ± 0.7. ODI value was positively correlated with follow-up periods (p = 0.04, r = 0.471). New degenerative disc disease (DDD) was observed in 6 out of 37 (16) patients. Conclusion: In spite of the efficacy and safety of PSF surgery of AIS, it might result in irreversible complications such as DDD. Moreover, the amount of post-operative disability might increase over the time and should be discussed with the patients. © 2018 The Author(s)

    Carotid Plaque Age Is a Feature of Plaque Stability Inversely Related to Levels of Plasma Insulin

    Get PDF
    C-declination curve (a result of the atomic bomb tests in the 1950s and 1960s) to determine the average biological age of carotid plaques.C content by accelerator mass spectrometry. The average plaque age (i.e. formation time) was 9.6±3.3 years. All but two plaques had formed within 5–15 years before surgery. Plaque age was not associated with the chronological ages of the patients but was inversely related to plasma insulin levels (p = 0.0014). Most plaques were echo-lucent rather than echo-rich (2.24±0.97, range 1–5). However, plaques in the lowest tercile of plaque age (most recently formed) were characterized by further instability with a higher content of lipids and macrophages (67.8±12.4 vs. 50.4±6.2, p = 0.00005; 57.6±26.1 vs. 39.8±25.7, p<0.0005, respectively), less collagen (45.3±6.1 vs. 51.1±9.8, p<0.05), and fewer smooth muscle cells (130±31 vs. 141±21, p<0.05) than plaques in the highest tercile. Microarray analysis of plaques in the lowest tercile also showed increased activity of genes involved in immune responses and oxidative phosphorylation.C, can improve our understanding of carotid plaque stability and therefore risk for clinical complications. Our results also suggest that levels of plasma insulin might be involved in determining carotid plaque age

    When one size does not fit all: Reconsidering PCOS etiology, diagnosis, clinical subgroups, and subgroup-specific treatments

    Get PDF
    Polycystic Ovary Syndrome (PCOS) is a complex endocrine disorder that affects a large proportion of women. Due to its heterogeneity, the best diagnostic strategy has been a matter of contention. Since 1990 scientific societies in the field of human reproduction have tried to define the pivotal criteria for the diagnosis of PCOS. The consensus Rotterdam diagnostic criteria included the presence of hyperandrogenism, oligo/anovulation, and polycystic ovarian morphology (PCOM), and have now been updated to evidence based diagnostic criteria in the 2018 and 2023 International Guideline diagnostic criteria endorsed by 39 societies internationally. Within the Rotterdam Criteria, at least two out of three of the above-mentioned features are required to be present to diagnose PCOS, resulting in four phenotypes being identified: phenotype A, characterized by the presence of all the features, phenotype B, exhibiting hyperandrogenism and oligo-anovulation, phenotype C, presenting as hyperandrogenism and PCOM and finally the phenotype D that is characterized by oligo-anovulation and PCOM, lacking the hyperandrogenic component. However, it is the hypothesis of the EGOI group that the Rotterdam phenotypes A, B, and C have a different underlying causality to phenotype D. Recent studies have highlighted the strong correlation between insulin resistance and hyperandrogenism, and the pivotal role of these factors in driving ovarian alterations, such as oligo-anovulation and follicular functional cyst formation. This new understanding of PCOS pathogenesis has led the authors to hypothesis that phenotypes A, B, and C are endocrine-metabolic syndromes with a metabolic clinical onset. Conversely, the absence of hyperandrogenism and metabolic disturbances in phenotype D suggests a different origin of this condition, and point towards novel pathophysiological mechanisms; however, these are still not fully understood. Further questions have been raised regarding the suitability of the “phenotypes” described by the Rotterdam Criteria by the publication by recent GWAS studies, which demonstrated that these phenotypes should be considered clinical subtypes as they are not reflected in the genetic picture. Hence, by capturing the heterogeneity of this complex disorder, current diagnostic criteria may benefit from a reassessment and the evaluation of additional parameters such as insulin resistance and endometrial thickness, with the purpose of not only improving their diagnostic accuracy but also of assigning an appropriate and personalized treatment. In this framework, the present overview aims to analyze the diagnostic criteria currently recognized by the scientific community and assess the suitability of their application in clinical practice in light of the newly emerging evidence

    Quality of Graphite Target for Biological/Biomedical/Environmental Applications of 14C-Accelerator Mass Spectrometry

    Get PDF
    Catalytic graphitization for 14C-accelerator mass spectrometry (14C-AMS) produced various forms of elemental carbon. Our high-throughput Zn reduction method (C/Fe = 1:5, 500 °C, 3 h) produced the AMS target of graphite-coated iron powder (GCIP), a mix of nongraphitic carbon and Fe3C. Crystallinity of the AMS targets of GCIP (nongraphitic carbon) was increased to turbostratic carbon by raising the C/Fe ratio from 1:5 to 1:1 and the graphitization temperature from 500 to 585 °C. The AMS target of GCIP containing turbostratic carbon had a large isotopic fractionation and a low AMS ion current. The AMS target of GCIP containing turbostratic carbon also yielded less accurate/precise 14C-AMS measurements because of the lower graphitization yield and lower thermal conductivity that were caused by the higher C/Fe ratio of 1:1. On the other hand, the AMS target of GCIP containing nongraphitic carbon had higher graphitization yield and better thermal conductivity over the AMS target of GCIP containing turbostratic carbon due to optimal surface area provided by the iron powder. Finally, graphitization yield and thermal conductivity were stronger determinants (over graphite crystallinity) for accurate/precise/high-throughput biological, biomedical, and environmental14C-AMS applications such as absorption, distribution, metabolism, elimination (ADME), and physiologically based pharmacokinetics (PBPK) of nutrients, drugs, phytochemicals, and environmental chemicals

    Oxidative stress in pregnancy and fertility pathologies

    Get PDF
    Oxidative stress designates the state of imbalance between reactive oxygen species (ROS) production and antioxidant levels. In a healthy placenta, there is an increase in ROS production, due to formation of new tissues and inherent metabolism, but this is balanced by higher levels of antioxidants. However, this balance is lost in some situations, with a consequent increase in oxidative stress levels. Oxidative stress has been implicated in several placental disorders and pregnancy pathologies. The present review intends to summarize what is known about the relationship between oxidative stress and well-known pregnancy disorders

    Brain energy rescue:an emerging therapeutic concept for neurodegenerative disorders of ageing

    Get PDF
    The brain requires a continuous supply of energy in the form of ATP, most of which is produced from glucose by oxidative phosphorylation in mitochondria, complemented by aerobic glycolysis in the cytoplasm. When glucose levels are limited, ketone bodies generated in the liver and lactate derived from exercising skeletal muscle can also become important energy substrates for the brain. In neurodegenerative disorders of ageing, brain glucose metabolism deteriorates in a progressive, region-specific and disease-specific manner — a problem that is best characterized in Alzheimer disease, where it begins presymptomatically. This Review discusses the status and prospects of therapeutic strategies for countering neurodegenerative disorders of ageing by improving, preserving or rescuing brain energetics. The approaches described include restoring oxidative phosphorylation and glycolysis, increasing insulin sensitivity, correcting mitochondrial dysfunction, ketone-based interventions, acting via hormones that modulate cerebral energetics, RNA therapeutics and complementary multimodal lifestyle changes
    corecore