357 research outputs found

    Ideal Quantum Gases in D-dimensional Space and Power-law Potentials

    Full text link
    We investigate ideal quantum gases in D-dimensional space and confined in a generic external potential by using the semiclassical approximation. In particular, we derive density of states, density profiles and critical temperatures for Fermions and Bosons trapped in isotropic power-law potentials. Form such results, one can easily obtain those of quantum gases in a rigid box and in a harmonic trap. Finally, we show that the Bose-Einstein condensation can set up in a confining power-law potential if and only if D/2+D/n>1{D/2}+{D/n}>1, where DD is the space dimension and nn is the power-law exponent.Comment: 18 pages, Latex, to be published in Journal of Mathematical Physic

    Bose-Einstein condensates under a spatially-modulated transverse confinement

    Full text link
    We derive an effective nonpolynomial Schrodinger equation (NPSE) for self-repulsive or attractive BEC in the nearly-1D cigar-shaped trap, with the transverse confining frequency periodically modulated along the axial direction. Besides the usual linear cigar-shaped trap, where the periodic modulation emulates the action of an optical lattice (OL), the model may be also relevant to toroidal traps, where an ordinary OL cannot be created. For either sign of the nonlinearity, extended and localized states are found, in the numerical form (using both the effective NPSE and the full 3D Gross-Pitaevskii equation) and by means of the variational approximation (VA). The latter is applied to construct ground-state solitons and predict the collapse threshold in the case of self-attraction. It is shown that numerical solutions provided by the one-dimensional NPSE are always very close to full 3D solutions, and the VA yields quite reasonable results too. The transition from delocalized states to gap solitons, in the first finite bandgap of the linear spectrum, is examined in detail, for the repulsive and attractive nonlinearities alike.Comment: 10 pages, 10 figures, accepted for publication in Phys. Rev.

    Quasi-one-dimensional Bose-Einstein condensates in nonlinear lattices

    Full text link
    We consider the three-dimensional (3D) mean-field model for the Bose-Einstein condensate (BEC), with a 1D nonlinear lattice (NL), which periodically changes the sign of the nonlinearity along the axial direction, and the harmonic-oscillator trapping potential applied in the transverse plane. The lattice can be created as an optical or magnetic one, by means of available experimental techniques. The objective is to identify stable 3D solitons supported by the setting. Two methods are developed for this purpose: The variational approximation, formulated in the framework of the 3D Gross-Pitaevskii equation, and the 1D nonpolynomial Schr\"{o}dinger equation (NPSE) in the axial direction, which allows one to predict the collapse in the framework of the 1D description. Results are summarized in the form of a stability region for the solitons in the plane of the NL strength and wavenumber. Both methods produce a similar form of the stability region. Unlike their counterparts supported by the NL in the 1D model with the cubic nonlinearity, kicked solitons of the NPSE cannot be set in motion, but the kick may help to stabilize them against the collapse, by causing the solitons to shed excess norm. A dynamical effect specific to the NL is found in the form of freely propagating small-amplitude wave packets emitted by perturbed solitons.Comment: 14 pages, 8 figures. To be published in J. Phys. B: At. Mol. Opt. Phy

    Matter-wave vortices in cigar-shaped and toroidal waveguides

    Full text link
    We study vortical states in a Bose-Einstein condensate (BEC) filling a cigar-shaped trap. An effective one-dimensional (1D) nonpolynomial Schroedinger equation (NPSE) is derived in this setting, for the models with both repulsive and attractive inter-atomic interactions. Analytical formulas for the density profiles are obtained from the NPSE in the case of self-repulsion within the Thomas-Fermi approximation, and in the case of the self-attraction as exact solutions (bright solitons). A crucially important ingredient of the analysis is the comparison of these predictions with direct numerical solutions for the vortex states in the underlying 3D Gross-Pitaevskii equation (GPE). The comparison demonstrates that the NPSE provides for a very accurate approximation, in all the cases, including the prediction of the stability of the bright solitons and collapse threshold for them. In addition to the straight cigar-shaped trap, we also consider a torus-shaped configuration. In that case, we find a threshold for the transition from the axially uniform state, with the transverse intrinsic vorticity, to a symmetry-breaking pattern, due to the instability in the self-attractive BEC filling the circular trap.Comment: 6 pages, Physical Review A, in pres

    Competition between symmetry breaking and onset of collapse in weakly coupled atomic condensates

    Full text link
    We analyze the symmetry breaking of matter-wave solitons in a pair of cigar-shaped traps coupled by tunneling of atoms. The model is based on a system of linearly coupled nonpolynomial Schr\"odinger equations (NPSEs). Unlike the well-known spontaneous-symmetry-breaking (SSB) bifurcation in coupled cubic equations, in the present model the SSB competes with the onset of collapse in this system. Stability regions of symmetric and asymmetric solitons, as well as the collapse region, are identified in the parameter space of the system.Comment: Physical Review A, in pres

    Localized-Interaction-Induced Quantum Reflection and Filtering of Bosonic Matter in a One-Dimensional Lattice Guide

    Full text link
    We study the dynamics of quantum bosonic waves confined in a one-dimensional tilted optical lattice. The bosons are under the action of an effective spatially localized nonlinear two-body potential barrier set in the central part of the lattice. This version of the Bose-Hubbard model can be realized in atomic Bose-Einstein condensates, by means of localized Feshbach resonance, and in quantum optics, using an arrayed waveguide with selectively doped guiding cores. Our numerical analysis demonstrates that the central barrier induces anomalous quantum reflection of incident wave packets acting solely on bosonic components with multiple onsite occupancies. From the other side single-occupancy components can pass the barrier thus allowing one to distill them in the central interacting zone. As a consequence, in this region one finds a state in which the multiple occupancy is forbidden, i.e., a Tonks-Girardeau gas. Our results demonstrate that this regime can be obtained dynamically, using relatively weak interactions, irrespective of their sign.Comment: 10 pages, 7 figures. Accepted for publication in NJP (Focus issue on "Strongly interacting quantum gases in one dimension"

    Quantum bright solitons in the Bose-Hubbard model with site-dependent repulsive interactions

    Full text link
    We introduce a one-dimensional (1D) spatially inhomogeneous Bose-Hubbard model (BHM) with the strength of the onsite repulsive interactions growing, with the discrete coordinate zjz_{j}, as zjα|z_{j}|^{\alpha } with α>0\alpha >0. Recently, the analysis of the mean-field (MF) counterpart of this system has demonstrated self-trapping of robust unstaggered discrete solitons, under condition α>1\alpha >1. Using the numerically implemented method of the density matrix renormalization group (DMRG), we demonstrate that, in a certain range of interaction, the BHM also self-traps, in the ground state, into a soliton-like configuration, at α>1\alpha >1, and remains weakly localized at α<1\alpha <1. An essential quantum feature is a residual density in the background surrounding the soliton-like peak in the BHM ground state, while in the MF limit the finite-density background is absent. Very strong onsite repulsion eventually destroys soliton-like states, and, for integer densities, the system enters the Mott phase with a spatially uniform densityComment: Phys. Rev. A, in pres

    Localized solutions of Lugiato-Lefever equations with focused pump

    Get PDF
    Lugiato-Lefever (LL) equations in one and two dimensions (1D and 2D) accurately describe the dynamics of optical fields in pumped lossy cavities with the intrinsic Kerr nonlinearity. The external pump is usually assumed to be uniform, but it can be made tightly focused too -- in particular, for building small pixels. We obtain solutions of the LL equations, with both the focusing and defocusing intrinsic nonlinearity, for 1D and 2D confined modes supported by the localized pump. In the 1D setting, we first develop a simple perturbation theory, based in the sech ansatz, in the case of weak pump and loss. Then, a family of exact analytical solutions for spatially confined modes is produced for the pump focused in the form of a delta-function, with a nonlinear loss (two-photon absorption) added to the LL model. Numerical findings demonstrate that these exact solutions are stable, both dynamically and structurally (the latter means that stable numerical solutions close to the exact ones are found when a specific condition, necessary for the existence of the analytical solution, does not hold). In 2D, vast families of stable confined modes are produced by means of a variational approximation and full numerical simulations.Comment: 26 pages, 9 figures, accepted for publication in Scientific Report

    Thermodynamics of Bose-Condensed Atomic Hydrogen

    Full text link
    We study the thermodynamics of the Bose-condensed atomic hydrogen confined in the Ioffe-Pritchard potential. Such a trapping potential, that models the magnetic trap used in recent experiments with hydrogen, is anharmonic and strongly anisotropic. We calculate the ground-state properties, the condensed and non-condensed fraction and the Bose-Einstein transition temperature. The thermodynamics of the system is strongly affected by the anharmonicity of this external trap. Finally, we consider the possibility to detect Josephson-like currents by creating a double-well barrier with a laser beam.Comment: 11 pages, 4 figures, to be published in European Physical Journal
    corecore