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Localized solutions of Lugiato-
Lefever equations with focused 
pump
Wesley B. Cardoso   1, Luca Salasnich2,3 & Boris A. Malomed   4,5

Lugiato-Lefever (LL) equations in one and two dimensions (1D and 2D) accurately describe the 
dynamics of optical fields in pumped lossy cavities with the intrinsic Kerr nonlinearity. The external 
pump is usually assumed to be uniform, but it can be made tightly focused too–in particular, for building 
small pixels. We obtain solutions of the LL equations, with both the focusing and defocusing intrinsic 
nonlinearity, for 1D and 2D confined modes supported by the localized pump. In the 1D setting, we 
first develop a simple perturbation theory, based in the sech ansatz, in the case of weak pump and 
loss. Then, a family of exact analytical solutions for spatially confined modes is produced for the pump 
focused in the form of a delta-function, with a nonlinear loss (two-photon absorption) added to the 
LL model. Numerical findings demonstrate that these exact solutions are stable, both dynamically 
and structurally (the latter means that stable numerical solutions close to the exact ones are found 
when a specific condition, necessary for the existence of the analytical solution, does not hold). In 2D, 
vast families of stable confined modes are produced by means of a variational approximation and full 
numerical simulations.

It is commonly known that stable self-confined modes, such as solitons, may be produced by the balance between 
nonlinear and dispersive effects in the medium1. Solitons have been observed in diverse contexts, including water 
waves2, nonlinear fiber optics3,4 (as temporal solitons), Bose-Einstein condensates (BECs)5–11, plasmas12,13 and 
plasmonics14,15, proteins16 and DNA17, etc. Optical spatial solitons were created too in a great variety of settings, 
such as cells filled by vapors of alkali metals18, photorefractive crystals19,20, waveguides made of liquid dielec-
trics21,22, silica23 and second-harmonic-generating materials24, nematic liquid-crystal planar cells25, semiconduc-
tor waveguides26, arrayed waveguides27, and others.

While solitons have been originally introduced as exact solutions of integrable models1,28,29, nonintegra-
ble systems provide for more generic and more realistic description of various physical settings. In particular, 
numerous dissipative systems, although lacking integrability, readily give rise to robust localized dissipative struc-
tures (LDSs), alias dissipative solitons30,31. In optics, an important example of a nonlinear dissipative medium 
which supports LDSs is provided by an optical resonator filled with a dispersive loss material featuring the Kerr 
nonlinearity, which is pumped by a coherent light beam (injected signal). This system is well modeled by the 
Lugiato-Lefever (LL) equation, originally introduced in32. As a mean-field equation, it applies to other settings 
too, such as Fabry-Perot resonators and ring cavities, fully or partially filled with nonlinear materials32, crys-
talline whispering-gallery-mode disk resonators33, and photonic-crystal-fiber resonators pumped by a coher-
ent continuous-wave input beam34,35. In these contexts, the LL equation has been widely used to model Kerr 
frequency combs36–40, with applications to optical metrology41, high-precision spectroscopy42,43, optical atomic 
clocks44,45, phase evolution in pulse trains46,47, optical communications48, synthesis of arbitrary optical wave-
forms49,50, and radio-frequency photonics51. A review of the development of various applications of the LL equa-
tions has been published recently52. Soliton-like LDSs in the 1D LL equation are important modes too, in a broad 
range of values of the respective physical parameters53.
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In many physically relevant contexts, especially as concerns realizations in optics, one- and two-dimensional 
(1D and 2D) LDSs supported by localized gain were studied in detail in the context of complex Ginzburg-Landau 
(CGL) equations54–62, see also reviews in63 and64. Specifically, by considering a 1D model with the tightly localized 
gain in the form of a delta-function, placed on top of the spatially uniform linear loss, analytical solutions for 
pinned LDSs pinned to the delta-function were found in54,60 (see also a review in64). Stable LDSs pinned to one 
or two gain-carrying “ hot spots”, shaped as narrow Gaussians, were reported too58,62. Further, stable 2D LDSs, 
including ones with an intrinsic vortex structure, supported by hot spots in the 2D geometry, were predicted in 
works55–57,59,61.

The objective of the present work is to introduce localized pump in the framework of the 1D and 2D LL equa-
tions, and find stable confined modes, which may be supported by the spatially focused pump. The difference 
from the previous works, which were dealing with the CGL equations54–62,64, is that the pump is represented by 
free terms in the LL equations, which do not multiply the field variable, while in the models of the CGL type the 
gain terms provide the parametric pump, i.e., they multiply the field variable.

We report analytical solutions of the 1D and 2D LL equation with the localized external pump, using a pos-
sibility to find exact analytical solutions for 1D modes pinned to the pump represented by the delta-function, 
and a variational approach, respectively. In the case of weak pump and loss, a simple perturbation theory for 
1D modes is developed too. In a systematic form, the results for confined modes, including the analysis of their 
stability, are produced by means of numerical methods. The results demonstrate good agreement between the 
analytical predictions and numerical findings. In particular, while the exact analytical solutions for pinned modes 
in 1D are available under a special condition, we demonstrate that very similar stable numerical solutions exist 
when this condition does not hold. The predicted confined stable modes, pinned to the “ hot spots”, may be used, 
in particular, for the design of pixels placed at required positions, cf. the formation of pixels predicted by the LL 
equation in other contexts65.

Results
The one-dimensional Lugiato-Lefever equation. The 1D model equations.  In the 1D setting, the 
scaled LL equation for amplitude φ(x, t) of the electromagnetic field in a nonlinear lossy cavity driven by a real 
localized pump E(x) is
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where γ > 0 is the dissipation rate, Δ is detuning of the pump with respect to the cavity, while σ = −1 and +1 cor-
responds to the self-focusing and defocusing nonlinearity, respectively. Note that dissipative solitons in the model 
of a fiber cavity, based on the 1D LL equation written in the temporal domain, with a pump in the form of a period 
train of Gaussians pulses, placed on top a nonzero background, were recently considered in work66. Accordingly, 
the LL equation (1) may also be considered in the temporal domain, with t and x replaced, respectively, by the 
propagation distance (z) and the temporal coordinate (usually denoted τ).

Stability of various patterns produced by Eq. (1) and its 2D counterpart considered below may be enhanced 
if an extra cubic lossy term, which represents the two-photon absorption, is added to the model. Then, Eq. (1) is 
replaced by
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with γ, Γ > 0.
Before proceeding to analysis of confined modes supported by the tightly localized pump, it is relevant to 

mention that spatial localization may also be provided, in the presence of the usual uniform pump, by a confining 
(typically, harmonic-oscillator) potential67. On the other hand, results reported below demonstrate that the use 
of the narrow pump region does not imply that modes supported by it must necessarily be narrow too. Note that 
effects of local defects on LDSs in similar settings were previously studied in works68,69.

The perturbative treatment.  In the case of the self-focusing nonlinearity (σ = −1) and positive detuning, 
Δ > 0, one can develop a perturbation theory for the case of small γ and small E(x) in Eqs (1) and (2). In the 
zero-order approximation, a localized solution is given by the usual nonlinear-Schrödinger soliton28,

φ = ∆ ∆ζ−x e h x( ) 2 sec ( 2 ) (3)i

(as the zero-order approximation for localized patterns in the LL equation with E = const, the soliton wave-
form was used before70). The constant phase shift in ansatz (3), ζ, for stationary modes is then determined by the 
balance condition for the integral power,

∫ φ= .
−∞

+∞
P x dx( ) (4)

2

Indeed, it follows from condition dP/dt = 0 that
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Substituting the sech approximation (3) into Eq. (5) predicts the value of the phase shift:

∫
ζ γ

=
+ Γ∆

∆
−∞

+∞ E x h x dx
sin 2[ (4/3) ]

( )sec ( 2 )
,

(6)

which is written for the generalized LL equation (2), that includes the cubic loss ∼Γ. This result makes sense if it 
yields |sinζ| ≤ 1, which implies that the LDS of the prsent type exists if the pump’s strength exceeds a threshold 
value, which is a combination of dissipation coefficients γ and Γ. In fact, a mode pinned to the localized pump 
exists at all values of its strength, as demonstrated by the exact solution displayed below, the threshold being an 
artifact following from the assumption of the rigid form of the perturbative ansatz (3).

Note that, even for = ≡E x( ) const 0 , integral ∫ Δ
−∞

+∞ E x x dx( )sech( 2 )  converges, hence the approximation 
based on Eqs (3)–(6) may correctly predict a state sitting on top of a small-amplitude CW background, with 
amplitude φ ∆ γ≈ + i/( )0 0 , under the condition that the LDS’s amplitude, (2Δ)1/2, is much larger than φ0, i.e., 

Δ0
2 3 . Detailed comparison of predictions of the perturbation theory with numerical results will be presented 

elsewhere.

A particular exact solution and states close to it.  In the case when the gain is localized in a very 
narrow region, it may be approximated by the Dirac’s delta-function, cf. a similar approximation adopted for a 
strongly localized gain in the CGL model54:

δ=E x E x( ) ( ) (7)0

(a similar model including a localized gain, with an LDS pinned to it, was also formulated in terms of the 
Swift-Hohenberg equation71). This means that the homogeneous version of Eq. (2),

γ φ φ σ φ φ




+ Γ| | +
∂
∂



 =





−

∂
∂

+ ∆ + | |




i

t x
1
2

,
(8)

2
2

2
2

must be solved with the boundary condition at x = 0 which determines the jump of the first derivative induced 
by δ(x) in Eq. (7):
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In this case, one can find a particular exact solution to the generalized LL equation (8) in the form of
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with parameters (μ is called the chirp)
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This particular solution is a non-generic one, as it exists at the single value of the mismatch parameter,
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(in other words, it is a codimension-one type of the exact solution, with “ one” referring to constraint (14), which 
must be adopted to produce the analytical expression). Note that the solution given by Eq. (13) exists (i.e., it gives 
λ2 > 0) for both σ = −1 and +1. The presence of the cubic-loss coefficient, Γ > 0, is necessary for the existence of 
the solution. Indeed, in the limit of Γ → 0 Eq. (13) leads to divergence:
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Finally, parameters ξ and ζ in expression (10) are obtained by its substitution in jump condition (9):

λ μ λξ
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An explicit result, following from Eq. (16), is
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where arcosh(Z) ≡ ln(Z + (Z2 −1)1/2).
In the CGL model with localized gain (rather than pump), exact pinned states are also codimension-one 

solutions, the difference being that, in the latter case they coexist with the zero state, which may or may not be 
stable solutions54.

In Fig. 1(a,b) we display typical examples of the analytically found modes pinned to the delta-function for 
focusing and defocusing nonlinearities, by choosing σ = −1 and σ = 1, respectively, along with their numerically 
found counterparts. In this case, we set parameters as γ = Γ = E0 = 1, and took Δ as per Eq. (14). The numerical 
counterparts were produced by using the naturally regularized delta function in the form given by Eq. (31) (see 
Methods), for three different values of width w. It is relevant to mention that, while the regularized delta-function 
approaches the standard delta-function in the limit of w → 0, the use of a finite stepsize Δx in the numerical pro-
cedure gives rise to a critical value Δw x/2cr  of w, the numerical solution getting drastically different from the 
analytical one at w < wcr. With the increase of the cubic-loss strength, Γ, wcr blows up (increases very fast) at 
Γ 3.
Further, in Fig. 2 we present systematic results for the 1D modes produced by analytical solution (10) and its 

numerical counterparts. These are the peak local power, max[|φ|2], the integral power, P (see Eq. (4)), and the 
mean squared width,

x P x x dx( ) , (19)
2 1 2 2∫ φ〈 〉 = −

−∞

+∞

shown in the left and right panels of the figure, as functions of the two nonlinearity coefficients, viz., the cubic-loss 
strength Γ and self-interaction strength σ (in the right panel, σ is considered as a continuously varying parameter, 
while in the left panel it is fixed to be σ = ±1 for the self-defocusing and focusing cases). Note that, as predicted 
by the analytical solutions (see Eqs (10) and (15)), the integral power P vanishes at Γ → 0. On the other hand, the 
results pertaining to σ = +1 and −1 tend to converge at large values of Γ, as the dissipative nonlinearity is domi-
nant in this limit. The numerically generated findings are very close to the analytical predictions.

It is worthy to note conspicuous maxima of the peak local power and integral power, observed in Fig. 2(b) at 
σ = 0 and σ ≈ −1, respectively. Further, the bottom panel in Fig. 2(b) reveals a counter-intuitive feature of the 
pinned states: they shrink (〈x2〉 → 0) in the limit of large σ > 0, i.e., strong self-defocusing (the same is also demon-
strated by Eq. (13), which predicts λ ∼ 〈 〉 → ∞x1/2 2  at σ → +∞). Usually, self-confined modes shrink in the 
opposite limit, of strong self-focusing. This surprising finding may be explained by the effect introduced by the 
cubic loss term ~Γ. Indeed, as mentioned above, the exact solution for the pinned state does not exist at Γ = 0, 
and, in the presence of Γ > 0, the shape of the mode is essentially affected by its chirp, which is produced by Eq. 
(11).

Further, Fig. 3 displays the effect of the variation of the pump’s amplitude E0 and dissipation coefficient γ on 
the peak local power (max[|φ|2]) and integral power P (see Eq. (4)) of numerical solutions obtained from Eq. (2), 
for both the self-defocusing and focusing signs of the nonlinearity, i.e., σ = +1 and σ = −1, respectively, along 
with the counterparts predicted by the above analytical solutions. Naturally, the peak local and integral powers 

Figure 1.  Solid red lines display the exact solution (10) for the mode pinned to the delta-functional pump, 
and a set of numerical solutions based on the use of the regularized delta-function defined as per Eq. (31) (see 
Methods), with w = 0.05 (dashed orange lines), w = 0.1 (dashed-dotted gray lines), and w = 0.15 (dotted black 
lines). The results presented in (a) and (b) pertain to self-focusing (σ = −1) and self-defocusing (σ = 1) signs 
of the nonlinearity, respectively. All these solutions are stable. Other parameters are E0 = γ = Γ = 1, while Δ is 
given by Eq. (14).
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increase with the growth of E0, and decrease with the growth of γ. These properties can be used for an effective 
control of the localized modes by means of parameters E0 and γ.

Comparing the results obtained for the self-defocusing (σ = +1) and self-focusing (σ = −1) signs of the non-
linearity, we again observe a “ counter-intuitive” phenomenon, similar to that mentioned above, i.e., the solution 
is more localized in the case of the self-defocusing case than in the self-focusing case. Note that numerical results 
closely follow their analytical counterparts in Fig. 3 too.

Because the above codimension-one analytical solution is valid only under condition (14) imposed on the 
parameters, it is necessary to investigate the structural stability of the pinned modes against departure from this 
condition. To this end, in Fig. 4 we compare the solutions (both analytical and numerically found ones) obtained 
with the value of Δ selected as per Eq. (14), and their numerical counterparts obtained with this Δ replaced by 
0.75Δ and 1.25Δ. We conclude that these considerable variations of Δ produce a weak effect on the solutions, 
i.e., they are structurally stable, effectively representing generic pinned modes, rather than specially selected ones.

Figure 2.  Panels (a,b), (c,d), and (e,f) show, severally, the peak local power, max[|φ|2], integral norm P (see 
Eq. (4)), and the mean squared width 〈x2〉 (see Eq. (19)) of the analytical mode (10) versus the cubic-loss and 
self-interaction strengths, Γ and σ (left and right columns). The left columns correspond to γ = E0 = 1 and 
σ = 1 (solid blue lines) or σ = −1 (dashed black lines), i.e., the self-defocusing and focusing, respectively. In the 
right columns we set γ = Γ = 1 and E0 = 1 (solid blue lines) or E0 = 2 (dashed black lines). The corresponding 
numerical results are shown by chains of yellow circles and red boxes, respectively. The numerical data displayed 
here and other figures have been produced using the regularized delta-function (31), with w close to its above-
mentioned critical value (see Methods).

Figure 3.  Panels (a,c) and (b,d) show the peak local power (max[|φ|2]) and integral norm (P, see Eq. (4)), 
respectively, versus the pumping amplitude E0 and the dissipation rate γ (left and right columns). The left 
columns correspond to γ = Γ = 1 while in the right columns we set E0 = Γ = 1, both with σ = +1 and σ = −1, 
i.e., the self-defocusing and focusing (the corresponding analytical results are displayed by solid blue lines and 
dashed black lines, respectively), while the corresponding numerical results are shown by chains of yellow 
circles and red boxes, respectively.
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While changes in the profiles of the solutions produced by the variation of Δ are relatively small, it is relevant 
to mention that the solutions are more sensitive to the variation in the case of the self-focusing than in the defo-
cusing case.

Finally, systematic simulations of the perturbed solutions corroborate the stability of all the numerical solu-
tions emulating the analytically predicted modes pinned to the delta-function. In fact, all the solutions are strong 
attractors, as direct simulations demonstrate that Eq. (2) readily generates precisely these states, starting from the 
zero input, φ(x, 0) = 0. This numerical result is important, because the stability of the analytically found solutions 
cannot be explored in an analytical form.

The two-dimensional Lugiato-Lefever equation.  The 2D version of the 1D LL equation (1) is
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2 , and the cubic loss is not included here (Γ = 0), as, unlike the exact 1D solutions, this 
term is not necessary for finding 2D solutions reported here. Further, one may fix here γ = 1 by means of rescal-
ing. Below, we consider the Gaussian 2D shape of the pump, given by
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where P0 is the pump’s integral intensity, and parameter η controls its width.
In Fig. 5 we display the existence diagram of stable solutions produced by direct simulations of Eq. (20) in the 

plane of the mismatch and nonlinearity coefficients, (Δ, σ), for fixed pump’s parameters, P0 = 10 and η = 1. Light 

Figure 4.  Solid red lines display the exact solution (10) for the mode pinned to the delta-functional pump. 
They are compared to a set of numerically generated solutions produced with the help of the regularized delta-
function: dotted black lines pertain to mismatch parameter Δ taken exactly as per Eq. (14); dashed orange lines 
pertain to Δ → 0.75Δ, and dashed-dotted gray lines pertain to Δ → 1.25Δ. The results displayed in panels 
(a) and (b) are obtained for the self-focusing (σ = −1) and self-defocusing (σ = +1) signs of the nonlinearity, 
respectively. All these solutions are stable. Other parameters are E0 = γ = Γ = 1.

Figure 5.  Existence diagrams for stable 2D modes in the plane of parameters (Δ, σ), as produced by direct 
simulations of Eq. (20), with pump’s parameters P0 = 10 and η = 1. Panel (a) covers the range of σ ∈ [−5, 5] and 
Δ ∈ [−20, 20], while (b) is a zoom of (a) for σ ∈ [−4, 4] and Δ ∈ [−4, 4]. The region covered by red boxes is 
populated by single-peak (bell-shaped) modes (see Fig. 7), while yellow boxes designate parameters at which the 
shape of the modes is crater-shaped, featuring the maximum local power at a finite difference from the center, 
see an example in Fig. 9 below.
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yellow boxes denote values of parameters at which stable 2D solutions are crater-shaped (see Fig. 9 below), while 
red boxes correspond to the single-peak (bell-shaped) solutions, as shown below in Fig. 7. As concerns variational 
equations (28)–(30) (see Methods), their physically relevant solutions, corresponding to B > 0, have been found, 
by means of the relaxation method, for all values of parameters covering the range of σ ∈ [−5, 5] and Δ ∈ [−20, 
20], the respective picture essentially coinciding with one displayed on the basis of the full numerical solution in 
Fig. 5(a).

In Fig. 6(a) and (b) we display the integral power of the confined 2D modes, P, defined as per Eq. (25), as a 
function of the pump’s amplitude P0 and nonlinearity strength σ, respectively (see Eq. (21)). Note that in Fig. 6(a) 
the analytical results, produced by the variational ansatz (26), and their numerical counterpart, obtained from 
direct simulations of Eq. (20), are very close to each other. We observe that, in the self-focusing case (σ = −1, 
shown by the line with circles), the integral power is slightly larger than in the self-defocusing case (σ = 1, shown 
by the line with boxes). In Fig. 6(b), the abrupt growth of the power for Δ = −10 at σ > 4 make the numerical 
solutions unstable.

Generic examples of the local-power profiles, |φ|2, for the 2D modes, obtained from direct simulations 
(at t = 100) for two different values of Δ, and the comparisons with the corresponding approximate analyti-
cal solutions, based on ansatz (26), are displayed in Fig. 7. Actually, the numerical and analytical profiles are 
indistinguishable at these values of Δ, in accordance with the above results which also demonstrated very good 
agreement of the analytical predictions with the numerical counterparts at large values of Δ. However, at small 
values of Δ, the numerical solutions feature a strong increase in the norm and may become unstable. In this case, 
the analytical approximation is not relevant.

The situation in a parameter region where stable stationary modes are absent (see Fig. 5) is illustrated by 
numerically generated solutions (at t = 10) displayed in Fig. 8(a,b) for σ = −1 and Δ = −1, and in Fig. 8(c)–(d) 
for σ = −1 and Δ = +1. Due to the instability of the numerical solutions, the analytical predictions are not rele-
vant in this case.

As mentioned above, in a small part of their existence region (covered by yellow squared in Fig. 5), numeri-
cally found stable 2D modes feature a crater-like shape, with the maximum of the local power attained at a finite 
difference from the center, see an example in Fig. 9. Obviously, the analytical approximation based on ansatz (26) 
cannot reproduce this shape.

Discussion
The modifications of the well-known 1D and 2D LL (Lugiato-Lefever) equation introduced in this work, with 
tightly localized pump, make it possible to create new stable confined modes, which are of interest in terms of the 
use of the LL equations as models of the pattern formation in nonlinear dissipative media. They may also be used 
to design compact pixels that can be created in cavities modeled by the LL equations. The present work is based 
on the combination of analytical and numerical methods, in the 1D and 2D geometries alike, the analytical parts 
helping to achieve a deeper insight into the variety of steady-state confined modes produced by the LL equations.

In the 1D geometry, we have first developed a simple perturbation theory, based on the usual sech ansatz (3), 
in the case of weak pump and loss. Other results have produced a family of exact analytical solutions, assuming 
that the tightly focused gain is represented by the delta-function, while the self-interaction may have both focus-
ing and defocusing signs (σ < 0 and σ > 0, respectively). The analytical form of the solution is given by Eqs (10)–
(13), under the condition that the mismatch, Δ, takes the specially selected value (14), and the cubic nonlinear 
term, which represents two-photon losses in the optical medium (with rate Γ), is present. Furthermore, numer-
ical results, displayed in Fig. 4, corroborate the structural stability of the codimension-one analytical solutions, 
because the deviation of Δ from the spacial value (14) leads to weak variation of the stable pinned solutions. Most 
essential parameters which control the shape of the 1D pinned modes are two nonlinearity coefficient, σ and Γ. 
Characteristic features of the solution is the cusp at the center, and the phase structure (chirp). A remarkable 
fact is that the exact solutions are very close to their numerical counterparts, produced by the localized pump 

Figure 6.  (a) The integral power of the 2D modes, P, vs the pump’s amplitude, P0, for Δ = 10 and σ = −1, shown 
by the line with yellow circles, and σ = +1, the line with red boxes. (b) The integral power vs σ, pertaining to 
P0 = 10 and Δ = −10 or Δ = +10, shown by lines with yellow circles or red boxes, respectively. Numerical and 
variational solutions are indistinguishable in the range shown in the plots. Other parameters are γ = η = 1.
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shaped as a regularized delta-function, and the family of the so generated 1D modes is entirely stable. In fact, the 
proximity of the numerical and analytical solutions additionally confirms the structural stability of the latter. A 
noteworthy (and counter-intuitive) feature of the 1D modes is that they shrink with the increase of the strength of 
the self-defocusing nonlinearity. The 1D solution produced by the analysis may help to find similar states in more 
general pattern-formation models.

In the 2D geometry with the pump applied at a small Gaussian-shape “ hot spot”, systematic numerical results 
are reported in the combination with approximate analytical findings produced by the variational approxima-
tion. A vast stability area in the system’s parameter space has been found, the most essential parameters being 
the above-mentioned mismatch and nonlinearity coefficients, Δ and σ (the 2D system is considered without the 
two-photon loss, Γ = 0, as its presence is not a necessary condition for finding the relevant solutions). In most 
cases, the 2D modes pinned to the “ hot spot” feature a single-peak (bell-shaped) structure, which is stable, and 
is well approximated by the variational ansatz. In a small part of the parameter space, 2D stable modes feature a 
crater-like shape, with the maximum local power found at a finite distance from the center. In another small part 
of the parameter space, 2D modes are unstable.

As an extension of the analysis, it may be interesting to use numerical methods to construct modes pinned 
to a set of two mutually symmetric 1D or 2D hot spots, cf. a similar configuration elaborated for the 1D CGL 
equation in ref.72. In particular, in the case of the self-focusing nonlinearity, σ < 0, one may expect spontaneous 
symmetry breaking between peaks attached to the two pump maxima. On the other hand, in the 2D geometry 
it may also be interesting to introduce ring-shaped pump, which may give rise to confined modes with a vortex 
structure, cf. a similar consideration for the 2D CGL equation in ref.61. A possibility of spontaneous breaking of 
the axial symmetry in vortex modes may be addressed too, following the pattern of the analysis performed in the 
framework of the CGL equation74.

Methods
The variational approach.  Firstly, we define φ(x, y, t) ≡ Φ(x, y, t) exp (−γt), casting Eq. (20) in the form of

σ∂
∂
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




− ∇ + ∆ + |Φ|
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which can be derived from a real time-dependent Lagrangian,
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Figure 7.  Profiles of stable 2D modes, |φ(x, y)|2, as produced by direct simulations of Eq. (20) (at t = 100), for 
(a) Δ = −10 and (c) Δ = 10. Displayed in panels (b) and (d) are transverse profiles, |φ(x, 0)|2, corresponding to 
the 2D shapes shown in (a) and (c), respectively. Lines in (b) and (d) depict the approximate analytical solution 
based on ansatz (26), while chains of yellow circles represent the numerical solution. Other parameters are 
P0 = 10 and σ = γ = η = 1.

Figure 8.  Profiles of 2D solutions, |φ(x, y)|2, and the corresponding transverse profile, |φ(x, 0)|2, for Δ = −1 in 
(a), (b), and Δ = +1 in (c), (d). In (b) and (d), solid black lines represents the analytical results, that were used 
as inputs for the direct simulations. Results of the simulations (at t = 10) are shown by yellow circles. Other 
parameters are σ = −1, P0 = 10, and γ = η = 1.
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Note that the following exact power-balance equation is produced by Eq. (20):

∬γ φ= − −
dP
dt

P x y t E x y dxdy2 2 Im{ ( , , )} ( , ) , (24)

for the integral power defined as

∫ ∫ φ= | |P x y t dxdy( , , ) , (25)
2

cf. the 1D counterpart given by Eq. (5).
For the variational approximation, we use the 2D isotropic Gaussian ansatz73,

Φ = − − +γe A t B t iC t x y( )exp[ ( ( ) ( ))( )], (26)t 2 2

where A, B and C are real variational parameters, subject to obvious constraint B > 0. Next, substituting the ansatz 
in Eq. (23) and performing the integration, we arrive at the following effective Lagrangian:
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The variational (Euler-Lagrange) equations following from Lagrangian (27), ∂Leff/∂(A, B, C) = 0, are
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Numerical simulations.  To solve the one-dimensional equation (2) numerically, we made use of the regu-
larized delta-function based on the usual Gaussian expression (see ref64. and references therein):

δ π= −−x w x w( ) ( ) exp( / ), (31)1 2 2

with finite width w.
We employed a fourth-order split-step method to solve Eqs (2) and (20), starting from the zero input, φ(x, 

0) = 0. An output was categorized as a stable mode if it maintained a static profile for a long time ( ∼ts 1000, 
which corresponds 100 characteristic diffraction times). In most simulations, the spatial and temporal steps 
were fixed as Δx = 0.04 and Δt = 0.001. To produce the numerical results for the 1D LL equation, shown in Fig. 2, 
we chose values of w such that the resultant integral power was different from the analytical counterpart, corre-
sponding to exact solution (10), by no more than 3%.

Figure 9.  (a) The same as in Fig. 7(a), but with σ = −5 and Δ = −4. (b) The black dashed line is the static 
profile, |φ(x, 0)|2, of the numerically generated crater-shaped mode (at t = 100). The orange solid line shows a 
formal prediction of the variational approximation for these values of the parameters.
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To solve Eqs (28)–(30) for A, B, and C, produced by the variational approximation, we used a relaxation 
method with a fixed error constraint of 10−6. Then, the so found values were inserted in ansatz (26) to produce 
the full variational approximation for the 2D modes. Lastly, the above-mentioned scaled value of the dissipation 
parameter, γ = 1, was set in all the simulations.
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