287 research outputs found

    Noncontact Respiratory Measurement for Multiple People at Arbitrary Locations Using Array Radar and Respiratory-Space Clustering

    Get PDF
    We developed a noncontact measurement system for monitoring the respiration of multiple people using millimeter-wave array radar. To separate the radar echoes of multiple people, conventional techniques cluster the radar echoes in the time, frequency, or spatial domain. Focusing on the measurement of the respiratory signals of multiple people, we propose a method called respiratory-space clustering, in which individual differences in the respiratory rate are effectively exploited to accurately resolve the echoes from human bodies. The proposed respiratory-space clustering can separate echoes, even when people are located close to each other. In addition, the proposed method can be applied when the number of targets is unknown and can accurately estimate the number and positions of people. We perform multiple experiments involving five or seven participants to verify the performance of the proposed method, and quantitatively evaluate the estimation accuracy for the number of people and the respiratory intervals. The experimental results show that the average root-mean-square error in estimating the respiratory interval is 196 ms using the proposed method. The use of the proposed method, rather the conventional method, improves the accuracy of the estimation of the number of people by 85.0%, which indicates the effectiveness of the proposed method for the measurement of the respiration of multiple people

    Radar-Based Automatic Detection of Sleep Apnea Using Support Vector Machine

    Get PDF
    2020 International Symposium on Antennas and Propagation (ISAP), 25-28 Jan. 2021, Osaka, JapanEarly diagnosis of sleep-apnea-related breathing problems helps to avoid the increased risk they can cause. In this study, we performed simultaneous radar measurements and polysomnography on patients with sleep apnea. A support vector machine algorithm was applied to the radar data to automatically detect sleep apnea events. Support vector machine parameters were optimized using the relationship between the radar and polysomnography data. The support vector machine was found to be effective in noncontact detection of central/mixed sleep apnea events using radar data. The proposed approach achieved an accuracy of 79.5%, a recall of 71.2%, and a precision of 71.2%

    Diabetic Cardiovascular Disease Induced by Oxidative Stress.

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality among patients with diabetes mellitus (DM). DM can lead to multiple cardiovascular complications, including coronary artery disease (CAD), cardiac hypertrophy, and heart failure (HF). HF represents one of the most common causes of death in patients with DM and results from DM-induced CAD and diabetic cardiomyopathy. Oxidative stress is closely associated with the pathogenesis of DM and results from overproduction of reactive oxygen species (ROS). ROS overproduction is associated with hyperglycemia and metabolic disorders, such as impaired antioxidant function in conjunction with impaired antioxidant activity. Long-term exposure to oxidative stress in DM induces chronic inflammation and fibrosis in a range of tissues, leading to formation and progression of disease states in these tissues. Indeed, markers for oxidative stress are overexpressed in patients with DM, suggesting that increased ROS may be primarily responsible for the development of diabetic complications. Therefore, an understanding of the pathophysiological mechanisms mediated by oxidative stress is crucial to the prevention and treatment of diabetes-induced CVD. The current review focuses on the relationship between diabetes-induced CVD and oxidative stress, while highlighting the latest insights into this relationship from findings on diabetic heart and vascular disease

    Noncontact Detection of Sleep Apnea Using Radar and Expectation-Maximization Algorithm

    Full text link
    Sleep apnea syndrome requires early diagnosis because this syndrome can lead to a variety of health problems. If sleep apnea events can be detected in a noncontact manner using radar, we can then avoid the discomfort caused by the contact-type sensors that are used in conventional polysomnography. This study proposes a novel radar-based method for accurate detection of sleep apnea events. The proposed method uses the expectation-maximization algorithm to extract the respiratory features that form normal and abnormal breathing patterns, resulting in an adaptive apnea detection capability without any requirement for empirical parameters. We conducted an experimental quantitative evaluation of the proposed method by performing polysomnography and radar measurements simultaneously in five patients with the symptoms of sleep apnea syndrome. Through these experiments, we show that the proposed method can detect the number of apnea and hypopnea events per hour with an error of 4.8 times/hour; this represents an improvement in the accuracy by 1.8 times when compared with the conventional threshold-based method and demonstrates the effectiveness of our proposed method.Comment: 8 pages, 12 figures, 3 tables. This work is going to be submitted to the IEEE for possible publicatio

    The DsbA-L gene is associated with respiratory function of the elderly via its adiponectin multimeric or antioxidant properties

    Get PDF
    Oxidative stress and inflammation play a key role in the age-related decline in the respiratory function. Adipokine in relation to the metabolic and inflammatory systems is attracting growing interest in the field of respiratory dysfunction. The present clinical and experimental studies investigated the role of the disulfide bond-forming oxidoreductase A-like protein (DsbA-L) gene, which has antioxidant and adiponectin multimeric (i.e. activation) properties, on the respiratory function of the elderly. We performed a retrospective longitudinal genotype-phenotype relationship analysis of 318 Japanese relatively elderly participants (mean age ± standard deviation: 67.0 ± 5.8 years) during a health screening program and an in vitro DsbA-L knock-down evaluation using 16HBE14o-cells, a commonly evaluated human airway epithelial cell line. The DsbA-L rs1917760 polymorphism was associated with a reduction in the ratio of forced expiratory volume in 1 second (FEV1)/forced vital capacity (FVC) and %FEV1 and with the elevation of the prevalence of FEV1/FVC < 70%. We also confirmed that the polymorphism was associated with a decreased respiratory function in relation to a decrease in the ratio of high-molecular-weight adiponectin/total adiponectin (as a marker of adiponectin multimerization) and an increase in the oxidized human serum albumin (as an oxidative stress marker). Furthermore, we clarified that DsbA-L knock-down induced oxidative stress and up-regulated the mucus production in human airway epithelial cells. These findings suggest that the DsbA-L gene may play a role in protecting the respiratory function of the elderly, possibly via increased systemic adiponectin functions secreted from adipocytes or through systemic and/or local pulmonary antioxidant properties

    Urinary biopyrrins levels are elevated in relation to severity of heart failure

    Get PDF
    AbstractObjectivesWe investigated the relationship between the urinary levels of biopyrrins and the severity of heart failure (HF).BackgroundOxidative stress is evident in heart disease and contributes to the development of ventricular dysfunction in patients with HF. Biopyrrins, oxidative metabolites of bilirubin, have been discovered as potential markers of oxidative stress.MethodsWe measured the levels of urinary biopyrrins and plasma B-type natriuretic peptide (BNP) in 94 patients with HF (59 men; mean age 65 years) and 47 control subjects (30 men; mean age 65 years). Urine and blood samples were taken after admission in all subjects. Further urine samples were obtained from 40 patients after treatment of HF.ResultsThe urinary biopyrrins/creatinine levels (μmol/g creatinine) were the highest in patients in New York Heart Association (NYHA) class III/IV (n = 26; 17.05 [range 7.85 to 42.91]). The urinary biopyrrins/creatinine levels in patients in NYHA class I (n = 35; 3.46 [range 2.60 to 5.42]) or II (n = 33; 5.39 [range 3.37 to 9.36]) were significantly higher than those in controls (2.38 [range 1.57 to 3.15]). There were significant differences in urinary biopyrrins/creatinine levels among each group. The treatment of HF significantly decreased both urinary biopyrrins/creatinine levels (from 7.43 [range 3.84 to 17.05] to 3.07 [range 2.21 to 5.71]) and NYHA class (from 2.5 ± 0.1 to 1.7 ± 0.1). Log biopyrrins/creatinine levels were positively correlated with log BNP levels (r = 0.650, p < 0.001).ConclusionsThese results indicate that urinary biopyrrins levels are increased in patients with HF and are elevated in proportion to its severity

    HSP47 levels determine the degree of body adiposity

    Get PDF
    Shin J., Toyoda S., Okuno Y., et al. HSP47 levels determine the degree of body adiposity. Nature Communications 14, 7319 (2023); https://doi.org/10.1038/s41467-023-43080-x.Adiposity varies among individuals with the influence of diverse physiological, pathological, environmental, hormonal, and genetic factors, but a unified molecular basis remains elusive. Here, we identify HSP47, a collagen-specific chaperone, as a key determinant of body adiposity. HSP47 expression is abundant in adipose tissue; increased with feeding, overeating, and obesity; decreased with fasting, exercise, calorie restriction, bariatric surgery, and cachexia; and correlated with fat mass, BMI, waist, and hip circumferences. Insulin and glucocorticoids, respectively, up- and down-regulate HSP47 expression. In humans, the increase of HSP47 gene expression by its intron or synonymous variants is associated with higher body adiposity traits. In mice, the adipose-specific knockout or pharmacological inhibition of HSP47 leads to lower body adiposity compared to the control. Mechanistically, HSP47 promotes collagen dynamics in the folding, secretion, and interaction with integrin, which activates FAK signaling and preserves PPARγ protein from proteasomal degradation, partly related to MDM2. The study highlights the significance of HSP47 in determining the amount of body fat individually and under various circumstances
    corecore