43 research outputs found

    Adaptive Gaze Strategies for Locomotion with Constricted Visual Field

    Get PDF
    In retinitis pigmentosa (RP), loss of peripheral visual field accounts for most difficulties encountered in visuo-motor coordination during locomotion. The purpose of this study was to accurately assess the impact of peripheral visual field loss on gaze strategies during locomotion, and identify compensatory mechanisms. Nine RP subjects presenting a central visual field limited to 10–25° in diameter, and nine healthy subjects were asked to walk in one of three directions—straight ahead to a visual target, leftward and rightward through a door frame, with or without obstacle on the way. Whole body kinematics were recorded by motion capture, and gaze direction in space was reconstructed using an eye-tracker. Changes in gaze strategies were identified in RP subjects, including extensive exploration prior to walking, frequent fixations of the ground (even knowing no obstacle was present), of door edges, essentially of the proximal one, of obstacle edge/corner, and alternating door edges fixations when approaching the door. This was associated with more frequent, sometimes larger rapid-eye-movements, larger movements, and forward tilting of the head. Despite the visual handicap, the trajectory geometry was identical between groups, with a small decrease in walking speed in RPs. These findings identify the adaptive changes in sensory-motor coordination, in order to ensure visual awareness of the surrounding, detect changes in spatial configuration, collect information for self-motion, update the postural reference frame, and update egocentric distances to environmental objects. They are of crucial importance for the design of optimized rehabilitation procedures

    Direction-selective motion blindness after unilateral posterior brain damage

    Get PDF
    Motion blindness (MB) is defined as the selective disturbance of visual motion perception despite intact perception of other features of the visual scene. MB is characterized by a pandirectional deficit of motion direction discrimination and is assumed to result from damage to the visual motion pathway, especially area MT/V5. However, the most characteristic feature of primate MT/V5 neurons is not their motion selectivity but their preference for one direction of motion (direction selectivity), which changes incrementally at neighbouring columns. In addition to this microscopic directional organization, studies in nonhuman and human primates suggest that single directions of motion are also coded at a more macroscopic level. We thus hypothesized that if MB in humans results from damage to direction-selective neurons in the visual motion pathway, posterior brain damage might cause MB which is direction selective, not pandirectional. The present study investigated motion direction discrimination in patients with posterior unilateral brain damage and determined separate psychophysical thresholds for the four cardinal directions. In addition, we analysed whether the direction of erroneous motion perception (i.e. the perception of right motion for upward motion) was random or showed a directional bias. We report three principal findings. First, motion direction discrimination was severely impaired in one or two directions while it was normal in the other directions. This constituted direction-selective MB. Second, MB was characterized not only by a quantitative direction-selective increase in psychophysical thresholds but also by a qualitative impairment of perceiving motion direction systematically in wrong directions. Both findings suggest that the cortical modules specialized for the perception of a single direction of motion might be larger than previously thought. Third, lesion analysis showed that unilateral damage, not only the human homologue of MT/V5 but also to parieto-occipital cortex, leads to MB

    A technique to train new oculomotor behavior in patients with central macular scotomas during reading related tasks using scanning laser ophthalmoscopy: immediate functional benefits and gains retention

    Get PDF
    BACKGROUND: Reading with a central scotoma involves the use of preferred retinal loci (PRLs) that enable both letter resolution and global viewing of word. Spontaneously developed PRLs however often privilege spatial resolution and, as a result, visual span is commonly limited by the position of the scotoma. In this study we designed and performed the pilot trial of a training procedure aimed at modifying oculomotor behavior in subjects with central field loss. We use an additional fixation point which, when combined with the initial PRL, allows the fulfillment of both letter resolution and global viewing of words. METHODS: The training procedure comprises ten training sessions conducted with the scanning laser ophthalmoscope (SLO). Subjects have to read single letters and isolated words varying in length, by combining the use of their initial PRL with the one of an examiner's selected trained retinal locus (TRL). We enrolled five subjects to test for the feasibility of the training technique. They showed stable maculopathy and persisting major reading difficulties despite previous orthoptic rehabilitation. We evaluated ETDRS visual acuity, threshold character size for single letters and isolated words, accuracy for paragraphed text reading and reading strategies before, immediately after SLO training, and three months later. RESULTS: Training the use of multiple PRLs in patients with central field loss is feasible and contributes to adapt oculomotor strategies during reading related tasks. Immediately after SLO training subjects used in combination with their initial PRL the examiner's selected TRL and other newly self-selected PRLs. Training gains were also reflected in ETDRS acuity, threshold character size for words of different lengths and in paragraphed text reading. Interestingly, subjects benefited variously from the training procedure and gains were retained differently as a function of word length. CONCLUSION: We designed a new procedure for training patients with central field loss using scanning laser ophthalmoscopy. Our initial results on the acquisition of newly self-selected PRLs and the development of new oculomotor behaviors suggest that the procedure aiming primarily at developing an examiner's selected TRL might have initiated a more global functional adaptation process

    Long-Term Results from an Epiretinal Prosthesis to Restore Sight to the Blind

    Get PDF
    PurposeRetinitis pigmentosa (RP) is a group of inherited retinal degenerations leading to blindness due to photoreceptor loss. Retinitis pigmentosa is a rare disease, affecting only approximately 100 000 people in the United States. There is no cure and no approved medical therapy to slow or reverse RP. The purpose of this clinical trial was to evaluate the safety, reliability, and benefit of the Argus II Retinal Prosthesis System (Second Sight Medical Products, Inc, Sylmar, CA) in restoring some visual function to subjects completely blind from RP. We report clinical trial results at 1 and 3 years after implantation.DesignThe study is a multicenter, single-arm, prospective clinical trial.ParticipantsThere were 30 subjects in 10 centers in the United States and Europe. Subjects served as their own controls, that is, implanted eye versus fellow eye, and system on versus system off (native residual vision).MethodsThe Argus II System was implanted on and in a single eye (typically the worse-seeing eye) of blind subjects. Subjects wore glasses mounted with a small camera and a video processor that converted images into stimulation patterns sent to the electrode array on the retina.Main Outcome MeasuresThe primary outcome measures were safety (the number, seriousness, and relatedness of adverse events) and visual function, as measured by 3 computer-based, objective tests.ResultsA total of 29 of 30 subjects had functioning Argus II Systems implants 3 years after implantation. Eleven subjects experienced a total of 23 serious device- or surgery-related adverse events. All were treated with standard ophthalmic care. As a group, subjects performed significantly better with the system on than off on all visual function tests and functional vision assessments.ConclusionsThe 3-year results of the Argus II trial support the long-term safety profile and benefit of the Argus II System for patients blind from RP. Earlier results from this trial were used to gain approval of the Argus II by the Food and Drug Administration and a CE mark in Europe. The Argus II System is the first and only retinal implant to have both approvals

    Visual recovery after perinatal stroke evidenced by functional and diffusion MRI: case report

    Get PDF
    BACKGROUND: After perinatal brain injury, clinico-anatomic correlations of functional deficits and brain plasticity remain difficult to evaluate clinically in the young infant. Thus, new non-invasive methods capable of early functional diagnosis are needed in young infants. CASE PRESENTATION: The visual system recovery in an infant with perinatal stroke is assessed by combining diffusion tensor imaging (DTI) and event-related functional MRI (ER-fMRI). All experiments were done at 1.5T. A first DTI experiment was performed at 12 months of age. At 20 months of age, a second DTI experiment was performed and combined with an ER-fMRI experiment with visual stimuli (2 Hz visual flash). At 20 months of age, ER-fMRI showed significant negative activation in the visual cortex of the injured left hemisphere that was not previously observed in the same infant. DTI maps suggest recovery of the optic radiation in the vicinity of the lesion. Optic radiations in the injured hemisphere are more prominent in DTI at 20 months of age than in DTI at 12 months of age. CONCLUSION: Our data indicate that functional cortical recovery is supported by structural modifications that concern major pathways of the visual system. These neuroimaging findings might contribute to elaborate a pertinent strategy in terms of diagnosis and rehabilitation

    Occurrence of "Pseudo Regressions" and "Pseudo Line Losses", When Reading with a Central Scotoma

    No full text
    It has been reported that, in patients with macular disorders, frequent regressions and vertical saccades occur when reading texts. Hitherto thought to be inappropriate, we believe that in fact they may reflect purposeful changes in the fixation mode

    Bruegel's Syndrome: A Misnomer

    No full text
    Bruegel's syndrome was first proposed in 1976 as an eponym for blepharospasm-oromandibular dystonia syndrome, because it was felt that a portrait by Pieter Bruegel the Elder (1525-1569) demonstrated that the painter clearly recognised the syndrome. This designation has subsequently been widely accepted in the literature
    corecore