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Abstract

Motion blindness (MB) is defined as the selective disturbance of visual motion perception despite intact perception of other features of the
visual scene. MB is characterized by a pandirectional deficit of motion direction discrimination and is assumed to result from damage to the
visual motion pathway, especially area MT/V5. However, the most characteristic feature of primate MT/V5 neurons is not their motion
selectivity but their preference for one direction of motion (direction selectivity), which changes incrementally at neighbouring columns. In
addition to this microscopic directional organization, studies in nonhuman and human primates suggest that single directions of motion are
also coded at a more macroscopic level. We thus hypothesized that if MB in humans results from damage to direction-selective neurons in
the visual motion pathway, posterior brain damage might cause MB which is direction selective, not pandirectional. The present study
investigated motion direction discrimination in patients with posterior unilateral brain damage and determined separate psychophysical
thresholds for the four cardinal directions. In addition, we analysed whether the direction of erroneous motion perception (i.e. the
perception of right motion for upward motion) was random or showed a directional bias. We report three principal findings. First, motion
direction discrimination was severely impaired in one or two directions while it was normal in the other directions. This constituted
direction-selective MB. Second, MB was characterized not only by a quantitative direction-selective increase in psychophysical thresholds
but also by a qualitative impairment of perceiving motion direction systematically in wrong directions. Both findings suggest that the cortical
modules specialized for the perception of a single direction of motion might be larger than previously thought. Third, lesion analysis
showed that unilateral damage, not only the human homologue of MT/V5 but also to parieto-occipital cortex, leads to MB.

Introduction

Motion blindness (MB or akinetopsia) in humans is characterized by

the selective disturbance of visual motion perception despite normal

perception of other features within the visual scene such as colour and

shape (Poetzl & Redlich, 1911; Goldstein & Gelb, 1918; Zihl et al.,

1983; Vaina, 1989; see reviews by Grüsser & Landis, 1991; Zeki, 1991).

The associated brain damage is generally extensive and bilateral,

including the temporal, parietal and occipital lobe (Zihl et al., 1983,

1991; Vaina et al., 1989). MB is characterized by a pandirectional

deficit of motion direction discrimination (MDD), which has also been

described in a less severe form subsequent to unilateral brain damage in

the central and contralateral visual field (Plant & Nakayama, 1993;

Plant et al., 1993; Barton et al., 1995; Greenlee et al., 1995; Schenk &

Zihl, 1997; Vaina et al., 2001). MB is believed to result from circum-

scribed damage to direction-selective visual neurons in the cortical

visual motion pathway, especially MT/V5 (Nakayama, 1985; Maunsell

& Newsome, 1987; Zeki, 1991). In agreement with this, following

the study of Newsome & Paré (1988) who described a deficit in MDD

along the vertical axis, Pasternak and colleagues have described an

MDD in the macaque following unilateral (Rudolph & Pasternak, 1999)

or bilateral (Pasternak & Merigan, 1994) ablation of area MT/V5.

However, the latter area contains large amounts of neurons, whose main

characteristic feature is not their motion selectivity (pandirectional) but

their preference for one direction of motion (direction selectivity;

Dubner & Zeki, 1971; Zeki, 1974; Baker et al., 1981; Van Essen

et al., 1981; Albright et al., 1984). In addition, MT/V5 is organized in a

retinotopic fashion (Gattass & Gross, 1981; Van Essen et al., 1981;

Albright & Desimone, 1987; Maunsell & Van Essen, 1987). Whereas

Albright et al., (1984) showed that direction-selective neurons in MT/

V5 are organized in columns of similar directions and that neighbouring

neurons incrementally code different directions, Malonek et al. (1994)

have provided evidence that direction in MT/V5 is also coded topo-

graphically at a more macroscopic level. It might thus be hypothesized

that partial damage to MTþ/V5 and adjacent motion areas might

lead not only to a motion-selective visual discrimination deficit (pan-

directional) as generally stated, but to a direction-selective deficit.

Although most previous studies in patients with MB have only

described a motion-selective deficit (Plant et al., 1993; Greenlee &

Smith, 1997; Schenk & Zihl, 1997), Barton et al. (1995) found a

predominant deficit in MDD in the ipsilesional direction along the

horizontal axis in four of 23 patients. This was also reported by Plant &

Nakayama (1993; case 2) in one patient and confirmed by Vaina et al.

(2001) in a group of patients. Because both latter studies did not report

thresholds for vertical directions, none of the previous group studies

have analysed MDD thresholds for each of the four cardinal directions

separately. It is thus not known whether unilateral brain damage leads to

direction-selective MB. However, this demonstration seems necessary

before arguing that MB results from predominant damage to direction-

selective neurons in the visual motion pathway.

European Journal of Neuroscience, Vol. 18, pp. 709–722, 2003 � Federation of European Neuroscience Societies

doi:10.1046/j.1460-9568.2003.02771.x

Correspondence: Dr Olaf Blanke, Functional Brain Mapping Laboratory, 1Department of

Neurology, as above.

E-mail: olaf.blanke@hcuge.ch

Received 14 October 2002, revised 27 March 2003, accepted 6 May 2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147964887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Here we investigated MDD in patients with unilateral brain damage

and determined separate psychophysical thresholds for the four car-

dinal directions. We also analysed whether the direction of erroneous

motion perception at the psychophysical threshold (i.e. the perception

of right motion for upward motion) was random or showed a direc-

tional bias.

Materials and methods

Patients and control subjects

Twenty-one acute stroke patients with circumscribed unilateral poster-

ior brain lesions were admitted to the study from a well-defined

recruitment area. Only patients suffering from acute vascular strokes

were included in the present study in order to avoid as much as possible

functional reorganization related to plasticity changes in patients with

chronic lesions. Informed consent was obtained from all patients and

the study was conducted in conformity with the Declaration of

Helsinki. The visual fields of both eyes were tested for all patients

with an OCTOPUS 2000R automated perimeter (Interzeag AG, Swit-

zerland). Patients with hemianopia were excluded from the study.

Visual acuity was normal or corrected to normal in all patients and

healthy subjects. A detailed neuropsychological examination was

carried out to test for signs of visual neglect, attention disorders or

memory, language or executive disorders. Patients suffering from

hemispatial neglect and significant cognitive impairments were

excluded from the study. Patients with language disorders but spared

comprehension, mild cognitive deficits (attentional or mnestic) or

incomplete visual field defects were admitted to the study. Depending

on the performance in the motion discrimination task, the patients were

classified into two groups: patients who had abnormally elevated

psychophysical thresholds for at least one cardinal direction consti-

tuted group A; all other patients were in group B (see Results). The

patient group A (n¼ 10) consisted of seven males and three females,

group B (n¼ 11) of six males and five females. Patient B-7 was left-

handed; all other patients in both patient groups were right-handed.

Both groups had approximately similar numbers of patients with right

and left hemispheric brain damage (see Tables 1 and 2). Patient A-1

had bilateral brain damage, which was largely predominant in the right

hemisphere and was included in the analysis (only right hemispheric

damage was used for lesion analysis; Table 1). The 14 control subjects

(group C) were approximately matched for age, sex and handedness.

The mean age of the patients of group A was 62.1� 13.5 years, that of

group B 59.9� 17.2 years and that of group C 54.1� 8.5 years. There

was no significant difference between the mean ages of the patient and

control groups (t-test for independent samples: A–C, t22 ¼ 1.63,

P¼ 0.12; B–C, t23¼ 0.92, P¼ 0.36), nor was there a difference

between the mean age of the two patient groups (t19¼ 0.32, P¼
0.75). MDD was tested 1.5� 1.2 months after lesion onset in group A

and 0.7� 0.8 months after lesion onset in group B. There was no

significant difference between the mean onsets of testing between the

patient groups (t-test for independent samples, t19¼ 1.66; P¼ 0.11). For

further demographic and clinical details please refer to Tables 1 and 2.

Stimuli and apparatus

Coherent motion stimuli (random dot cinematograms, RDC) were

presented on a 20-inch computer monitor (Sony; frame rate 70 Hz,

640� 480 pixels) in black and white in a normally lit room as

described previously (Losey et al., 1998; Blanke et al., 2002). Viewing

distance was 100 cm. The stimuli were presented in a borderless square

of 12� 128 in the central visual field. Each random dot field contained

1000 dots (diameter 0.688). A percentage of the dots was programmed

to be displaced with a velocity of 28/s in the tested direction (signal

dots) and thus comparable to velocities used in previous studies in

groups of brain-damaged patients (Schenk & Zihl, 1997, 18/s; Barton

et al., 1995, 3.58/s; Vaina et al., 2001, 2.98/s). The percentage of

coherence motion (%CM) was defined as the number of signal dots

divided by the total number of dots and multiplied by 100. The

remaining dots were noise dots and plotted at random locations for

a random duration giving the impression of flickering dots. Dots

moving out of the stimulus area reappeared on the opposite side.

The direction of each RDC stimulus in each block was varied

randomly between the four cardinal directions (right–left–up–down).

An automated staircase algorithm varied the %CM in the RDC,

starting at 100%CM (all dots moving in one direction). Subjects were

asked to report whether they perceived motion as right, left, up or

down. However, patients frequently and repeatedly replied that they

did not perceive any directed motion and could not indicate any

specific direction. We thus modified the paradigm to the patients’

comfort and carried out a five-alternative forced-choice paradigm in

which the patients had to reply either the perceived direction or that

they did not perceive the direction of motion. This combination of

motion direction discrimination and detection was carried out in the

brain-damaged patients and the normal subjects in the present study. If

the answer of the subject was correct, the %CM was decreased; if not,

%CM was increased. Four independent staircases (one for each

direction) were randomly interleaved. The four staircases were con-

tinued until five response reversals had occurred for each tested

direction. The fact that the termination of one directional staircase

(i.e. in the case of a pathologically elevated threshold for this direction)

would render the remaining directional staircases easier was controlled

Table 1. Patient demographic and clinical data for group A

Patient Age (years) Gender Handedness

Lesion

Duration (months) Side Location Visual Field

A-1 65 M r 1.2 R (L) P-O (O) LIQ (complete)
A-2 86 M r 0.7 R P-O Full
A-3 70 F r 1.2 R P-O LIQ (partial)
A-4 56 M r 0.8 R P Full
A-5 59 M r 2 R T-O LSQ (complete)
A-6 37 F r 3.2 R P-O-T LIQ (partial)
A-7 65 F r 0.4 L T-O RIQ (complete)
A-8 52 M r 0.5 L O-P-T RIQ (partial)
A-9 56 F r 4.1 L T-O Full
A-10 75 M r 0.7 L T-O Full

M, male; F, female; r, Right-handed; R, right hemisphere lesion; L, left hemisphere lesion; P, parietal; O, occipital; T, temporal; LIQ, left inferior quadrananopsia;
RIQ, right inferior quadrananopsia; LSQ, left superior quadrananopsia; RSQ, right superior quadrananopsia.
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as follows. Once one directional staircase was finished, this latter

directional staircase was continued (but not used for threshold deter-

mination) along with the remaining staircases until five response

reversals had also occurred for all remaining directions. Thus, the

same number of repetitions was carried out for each tested direction per

subject who participated in the study. The mean of the last three

reversals was taken as the %CM threshold. Subjects were instructed

to look at the centre of the screen and to refrain from eye movements.

Fixation was monitored by the examiner and trials rejected if fixation

was not maintained (we can thus not exclude the possibility that small

amplitude eye movements might have occurred during some trials). No

feedback about correctness of the response was provided. Subjects gave

their answer aloud and the examiner recorded the response. The rate of

trial presentation was controlled by the examiner and adjusted to patient

comfort. Testing took �20 min and was carried out in one session.

Threshold analysis

Psychophysical thresholds were analysed in each tested direction

separately in all patients and all healthy subjects. In patients, the

horizontal directions were classified and analysed depending on the

side of lesion. Thus, the performance of a patient with right hemispheric

brain damage for stimuli moving in the right direction was classified as

the ipsilesional direction and leftwards moving stimuli as the contrale-

sional direction. In the healthy controls, the performance in the right

direction was defined as contralateral and the performance in the left

direction as ipsilateral. Based on the results from the healthy subjects,

upper 99% confidence intervals were derived for all tested directions

(contralesional, ipsilesional, up, down). In patients, %CM thresholds

falling above these limits were considered pathological threshold eleva-

tions. If a patient had a pathologically elevated %CM threshold in at

least one of the tested directions, she or he was considered abnormal and

included in group A. The remaining patients constituted group B.

Statistical analysis was performed using a two-way ANOVA on the

contrast threshold value, which tested the effects of the between-subjects

factor experimental group (group A, group B, group C) and the within-

subject factor direction (contralesional, ipsilesional, up, down).

Analysis of directional misperceptions

Two qualitatively different types of error could occur during MDD: on

the one hand, the direction of motion could be erroneously discrimi-

nated (i.e. right response for a motion signal which indicates down

motion) to produce a directional error (DE). Alternatively, motion direc-

tion could be not discriminated at all, resulting in a ‘no directed motion’

response (NO). The two error types were analysed separately. The total

number of wrong responses characterized by the absence of directed

motion perception (NO) as well as of DEs were calculated. Direction

was classified as for threshold analysis (contralesional, ipsilesional, up,

down). For DEs, the sum of all false perceptions of motion direction

(into the contralesional, ipsilesional, up, and down directions) were

calculated separately. Thus, the number of DEs in the ipsilesional

direction was the sum of all motion stimuli moving in the contralesional,

up or down directions which were falsely perceived in the ipsilesional

direction, etc. Thus, an incorrect ipsilesional response for a contrale-

sional or downward motion stimulus were both defined as an ipsilesional

DE. This allowed us to calculate the number of DEs in each tested

direction. Statistical analysis was performed using a two-way ANOVA on

the number of DEs, which tested the effects of the between-subjects

factor experimental group (group A, group B, group C) and the within-

subject factor direction (contralesional, ipsilesional, up, down).

Lesion analysis

All brain lesions were delineated by magnetic resonance imaging

(MRI). MRI was performed with a 1.5-tesla Eclipse system (Marconi

Medical Systems, Cleveland, OH, USA). Lesions were drawn on the

original MRIs and subsequently normalized into Talairach space (Talair-

ach & Tournoux, 1988) as described previously (Spinelli et al., 2001).

All lesions were mapped onto the left hemisphere, irrespective of the

side of brain damage. In patient A-1 who had bilateral but strongly

dominant right hemisphere damage, only the latter brain damage was

included in the lesion analysis. Three-dimensional rendering and super-

imposing of the individual lesions was carried out using AVS software

(Advanced Visual Systems, MA, USA; see Spinelli et al., 2001).

Results

Psychophysical thresholds

All 21 patients completed testing, and results were compared with the

results of 14 age-matched healthy subjects. Eleven patients had normal

discrimination thresholds (i.e. within 99% confidence intervals of

normals) in all tested directions (group B) and 10 patients had abnor-

mally elevated psychophysical thresholds in at least one tested direction

(group A). The number of repetitions per subject carried out to

determine the psychophysical thresholds did not differ statistically

between the three subject groups (mean� SD: group A, 21.0� 2.9;

group B, 22.9� 1.9; group C, 22.6� 2.6; t-test for independent samples,

A–B, t9¼�1.395, P¼ 0.196; A–C, t9¼�1.237, P¼ 0.247, B–C,

t10¼ 0.6531, P¼ 0.528). In group A, a unidirectional deficit in

MDD was found in five patients, a bi-directional deficit in one and a

Table 2. Patient demographic and clinical data for group B

Patient Age (years) Gender Handedness

Lesion

Duration (months) Side Location Visual Field

B-1 54 F r 0.3 L P-O Full
B-2 56 F r 0.3 L P-O Full
B-3 70 M r 0.5 R T-O LSQ (complete)
B-4 72 F r 2.9 L T-O RIQ (partial)
B-5 68 M r 0.4 L T-O RSQ (partial)
B-6 38 M r 0.6 R T-O Full
B-7 25 F l 0.9 R T-O Full
B-8 54 F r 0.3 R O Full
B-9 87 M r 0.5 R O LIQ (partial)
B-10 71 M r 0.6 R P LIQ (complete)
B-11 64 M r 0.2 R T-O LSQ (complete)

M, male; F, female; r, right-handed; l, left-handed; R, right hemisphere lesion; L, left hemisphere lesion; P, parietal; O, occipital; T, temporal; LIQ, left inferior
quadrananopsia; RIQ, right inferior quadrananopsia; LSQ, left superior quadrananopsia; RSQ, right superior quadrananopsia.
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Fig. 1. Psychophysical thresholds for all tested directions are given for all patients from group A. (a–e) The performance of the patients from group A with
unidirectional MB. Pathologically elevated psychophysical thresholds are indicated by black columns. Thus, patient A-9 (e) has an abnormally elevated threshold in
the down direction (black column), but discriminated all other directions normally. The same was true for patient A-8, but the MDD deficit was found in the
ipsilesional direction (d, black column). (f) Patient A-6 from group A with bidirectional MB. Her threshold values were abnormally elevated in the contralesional and
down direction, but normal in the other tested directions. (g–j) The performance of patients with tri- or pandirectional MDD deficits. The performance for each tested
direction is indicated by the arrows. The arrow pointing to the right (with asterisks) represents the contralesional direction and the arrow pointing to the left (with
asterisks) the ipsilesional direction for all patients. The y-axis indicates the psychophysical threshold (TH) in percentage coherent motion (%CM; logarithmic scale,
0.1–100). Dashed lines depict upper and lower 99% confidence limits and the thick line the mean as derived from the control group (group C).
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tridirectional in three patients. One patient had a pandirectional deficit.

The performance of all patients is illustrated in Fig. 1. Figure 1a–e

describes the MDD thresholds of the five patients from group A with a

unidirectional MDD deficit. Performance is shown separately for each

tested direction. Patient A-9 (Fig. 1e) had an abnormally elevated

threshold for down motion (81.3%CM), but normal performance for

other directions (all %CM< 1.8). Similar findings were found for

patient A-8 who had an abnormal threshold for motion in the ipsilesional

direction (100%CM), while MDD was normal in the contralesional, the

up and the down directions (all %CM< 0.8; see Fig. 1d). Figure 1f

depicts the performance of patient A-6 with a bidirectional MDD deficit

(in the contralesional and down direction) and Fig. 1g–j the performance

of patients with tri- or pandirectional MDD deficits. Note that the

strength of threshold elevation is especially severe in three patients

with a unidirectional MDD deficit (Fig. 1b, d and e) and the patient with

a bidirectional MDD deficit (Fig. 1f). In these four patients the one or

two pathological thresholds are increased �100-fold, whereas the

remaining directional thresholds are normal.

Figure 2a depicts separately the means and SEMs of the thresholds

of the three subject groups for each tested direction. Note that the psy-

chophysical thresholds for each tested direction were elevated by

�1 log unit for group A. Whereas the effect of the experimental group

was significant (F2,32¼ 9.47, P¼ 0.001), there was no significant

effect of direction (F3,96¼ 2.15, P¼ 0.109), nor a significant interac-

tion (F6,96¼ 1.99, P¼ 0.074). A post hoc comparison (Scheffé test)

revealed that this effect was based on the performance of the patients of

group A, who performed significantly more poorly than both normals

(P¼ 0.002) and patients from group B (P¼ 0.003). The same post hoc

analysis for the main effect of direction did not reveal any significant

differences (all P-values> 0.10). This indicates that the patients’

ability (group A) to discriminate the direction of the moving stimuli

was significantly impaired, as compared to group B and C. However,

this analysis did not reveal a significant influence of the performance in

any of the tested cardinal directions on the global performance.

However, all motion-blind patients had a deficit which predominated

in one direction and nearly all of them (90%) had normal MDD in at

least one direction of motion (Fig. 1). In order to search for a direction-

selective deficit in the motion-blind patients (group A), statistical

analysis was repeated (two-way ANOVA with the factors experimental

group and stimulus direction) after reordering the MDD performance of

each direction for all patients and healthy subjects. Psychophysical

performance was not classified depending on the four cardinal directions

(contralesional, ipsilesional, up, down) as for the previous analysis.

Instead, the psychophysical performance value obtained for each car-

dinal direction was ordered, depending on the value of the threshold,

from lowest to highest threshold. This is explained graphically in Fig. 3.

If the MDD deficit in motion-blind patients is pandirectional and equally

pathological for each tested direction, reordering the data in this manner

should not lead to a significant effect of direction. Alternatively, if MB is

direction-selective or predominates in one or two directions, the statis-

tical effect of motion direction on the global performance could be

modified and lead to a significant effect of direction. The results of this

procedure are explained in Fig. 3 for two patients from group A (Fig. 3a

and b) and for one patient from group B (Fig. 3c). In Fig. 2b the results of

this re-ordering procedure are shown for all three subject groups (the

threshold which was most strongly elevated is shown on the right and the

lowest threshold is depicted on the left; intermediate thresholds are

shown in the middle). A two-way ANOVA revealed significant effects of

stimulus direction (F3,96¼ 7.90, P< 0.001) as well as experimental

group (unchanged as above). Importantly, their interaction was also

significant (F6,96¼ 6.58, P< 0.001). A series of post hoc comparisons

(Scheffé test) of the direction thresholds indicated an effect only for the

direction of motion that was most severely impaired (depicted on the

right of Fig. 2b; P-values from 0.0007 to 0.03; all other P-values

were >0.68). This indicates that a unidirectional MDD deficit was

responsible for the observed differences between motion-blind patients

(group A) and healthy subjects (group C) as well as normally perceiving

patients (group B).

Directional errors

Two qualitatively different types of error could occur during MDD:

on the one hand, the direction of motion could be erroneously

Fig. 2. Psychophysical thresholds for all tested directions are given for the patient
and control groups. (a) The mean and SEM of the discrimination threshold (y-
axis; logarithmic scale in %CM) for each tested direction (x-axis) and subject
group separately. The direction of the arrow (x-axis) indicates the direction of
motion that was to be discriminated. The arrow pointing to the right (with
asterisks) represents the contralesional direction and the arrow pointing to the left
(with asterisks) the ipsilesional direction. Performance of group A (motion-blind
patients) is indicated by the thick line (mean, &) and of group B by the thin
dashed line (mean, &). The performance of the healthy subjects (group C) is
depicted by the thin line (mean, *). Note the pathological %CM values for all
tested directions for the patients of group A. Although a significant difference was
found for the performance between group A and group B as well as the healthy
subjects, no such difference could be detected for the factor direction (see text). (b)
The mean and SEM of %CM is shown again for each subject group separately
[each group is coded as in (a)]. However, here the psychophysical performance of
each patient is not classified depending on cardinal direction (contralesional,
ipsilesional, up, down), but ordered from lowest (left of the figure) to highest (right
of the figure) threshold. This classification is therefore independent of cardinal
direction (see text, and also Fig. 3 for examples of this re-ordering for individual
patients). Regrouping leads, as expected, to higher %CM thresholds in the right of
the figure for all three subject groups. However, statistical analysis shows that the
performance in the direction of motion with mostly elevated %CM thresholds is
responsible for the observed differences between motion-blind patients (group A)
and healthy subjects (group C) as well as normally perceiving patients (group B).
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discriminated (i.e. right response for a motion signal which indicates

down motion) to produce a directional error (DE). Alternatively,

motion direction could be not discriminated at all, resulting in a

‘no directed motion’ response (NO). Although all three groups made

the same number of NOs (group A, 15.8� 8.3; group B, 17.2� 4.1;

group C, 14.1� 4.3; mean� SD; see Table 3 for statistical analysis),

patients in group A made significantly more DEs (8.0� 2.6) than either

controls (4.1� 2.4) or patients in group B (2.3� 2.1; see Table 3). For

the two groups of patients, the mean number of DEs is shown in Fig. 4a

and compared with the findings in the 14 healthy subjects. As for

threshold analysis, a two-way ANOVA on the number of DEs was

performed for the effects of the between-subjects factor experimental

group (group A, group B, healthy subjects) and the within-subject

factor direction (contralesional, ipsilesional, up, down). The effect

of the experimental group was highly significant (F2,32¼ 15.83,

P< 0.001), but the effect of direction was not (F3,96¼ 2.75, P¼
0.52). There was no significant interaction (F6,96¼ 1.62, P¼ 0.15).

A post hoc comparison (Scheffé test) revealed that this effect was

related to the performance of the patients in group A, who performed

significantly more poorly than the healthy subjects (P¼ 0.002) and the

patients from group B (P< 0.001). The same post hoc analysis

for the main effect of direction did not reveal any significant differ-

ences (all P-values >0.79). This indicates that the motion-blind

patients perceived the direction of motion significantly more often

in a wrong direction (independent of the four cardinal directions)

than did controls and the patients in group B. These data imply that

motion-blind patients suffer not only from a reduced capacity to

discriminate visual motion (quantitative MB), but also from an

Fig. 4. The total number of DEs in each cardinal direction is shown in (a) for
each direction and subject group separately. The direction of the arrows
indicates the direction of the DEs. The direction of DEs is indicated at the
bottom of the graph (contralesional, ipsilesional, up, down) as in Fig. 2a. Note
that the number of DEs in all tested directions (except down) are elevated with
respect to group B and the normals (group C). This was found to be significant,
although the factor direction was not significant (see text). In (b), the number of
DEs of each patient was not classified depending on cardinal direction (con-
tralesional, ipsilesional, up, down), but ordered from highest (left of the figure)
to lowest (right of the figure) number of DEs. As for the threshold analysis
which is depicted in Fig. 2b, this classification is not dependent on the cardinal
direction. The graph depicts the number of DEs separately for each group (A, B
and C). Statistical analysis showed that the two directions of motion with the
highest number of DEs are responsible for the observed differences between
motion-blind patients (group A) and healthy subjects (group C) as well as
normally perceiving patients (group B). This demonstrates that motion-blind
patients (group A) suffer not only from a reduced capacity to discriminate visual
motion but also from an increased likelihood of perceiving a given motion
stimulus in a wrong direction.

Fig. 3. The psychophysical performance value obtained for each cardinal
direction (left column) was ordered, depending on the value of the threshold,
from lowest to highest threshold (right column). The results of this procedure
are shown for (a and b) two patients from group A and (c) one patient from
group B. See text for further explanation.

Table 3. Erroneous motion direction discrimination

Comparison d.f. t-value P-value

NO (A–C) 22 0.637 0.53
NO (A–B) 19 �0.490 0.63
DE (A–C) 22 3.723 <0.01
DE (A–B) 19 5.652 <0.001

Statistical values (t-test for independent samples) for the comparison of the
number of directional errors (DEs) and the number of responses that were
characterized by the absence of directed motion perception (NO) in both
patient groups (groups A and B) and the healthy subjects (group C). Statistical
analysis revealed that the motion-blind patients (group A) made the same
number of NO as the patients in group B (NO, A–B) and the healthy controls
(NO, A–C). In comparison, the patients of group A made significantly more
DEs than patients in group B (DE, A–B) and the healthy subjects (DE, A–C).
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increased likelihood of perceiving a given motion stimulus in a wrong

direction (qualitative MB).

However, single-data inspection of the DEs in the motion-blind

patients showed that DEs often predominated in one or two directions

(see Fig. 5). In order to test whether this directional bias of erroneous

motion direction perception differed between subject groups, statis-

tical analysis was repeated after reordering the number of DEs. The

number of DEs was not classified depending on the four cardinal

directions (contralesional, ipsilesional, up, down) as for the previous

analysis of DEs. Instead, the number of DEs obtained for each cardinal

direction was ordered, depending on the number of DEs, from the

direction with the highest to lowest number of DEs (as was done

previously for threshold analysis). Again, as for threshold analysis, if

DEs in motion-blind patients are pandirectional, reordering the data

should not lead to a significant effect of direction. If the direction of

DEs predominates in any direction, the statistical effect of motion

direction could be modified and lead to a significant effect of direction.

The results of this procedure are shown in Fig. 4b where the number of

DEs is depicted from highest (on the left) to lowest (on the right) for all

groups. Statistical analysis was repeated (two-way ANOVA) and main

effects of stimulus direction (F3,96¼ 79.3519, P< 0.001) and the

experimental group (unchanged as above) were found to be significant,

as was their interaction (F6,96¼ 8.3329, P< 0.001). A post hoc

comparison (Scheffé test) of the direction of DEs indicated an effect

of the two directions into which most DEs were measured (depicted in

the two left columns in Fig. 5b; all P-values <0.001). This indicates

that patients in group A not only perceived the direction of motion

more often in a wrong direction, but did so systematically in two of

four tested directions, than did controls and patients in group B.

Finally, we checked whether there was a systematic relationship

between the number of DEs in a given direction and the respective

psychophysical thresholds in that direction. This is indicated by the

single-patient data as well as the group data. Patient A-8, for example

(see Fig. 5a), suffered from unidirectional MB (as defined by psycho-

physical threshold measurements) and made 100% (8/8, Fig. 5a) of the

total number of DEs in the two directions that had lowest thresholds.

Similar findings apply for patient A-9 (Fig. 5b), who made 70% of the

DEs (7/10) in the two directions which had lowest thresholds (contrale-

sional, upwards) and only 10% in the direction of MB (ipsilesional). This

relationship between strength of threshold elevations and the number

of DEs is also suggested by the data from group A where lowest

thresholds and highest number of DEs were in the upward direction

(the inverse was true for downward motion perception; compare Figs 2a

and 3a). In order to test whether a biased choice in favour of the directions

of motion with lower thresholds is present for the whole group of motion-

blind patients, the number of DEs was reordered. Now, the number of

DEs in the tested directions was ordered depending on the psychophy-

sical threshold value. The number of DEs in the directions with the two

lowest thresholds were grouped and compared with the number of DEs in

the directions with the two highest thresholds. This is shown in Fig. 6a for

a single patient (compare with the data from the same patient in Fig. 5a),

for group A (Fig. 6b), group B (Fig. 6d) and group C (Fig. 6c). As for the

reordering depending on the number of DEs in each tested direction (see

Fig. 4b), this classification is independent of cardinal direction. Statistical

analysis was repeated (two-way ANOVA) and main effects of experi-

mental group (groups A, B and C: F2,32¼ 21.439, P< 0.001) and

direction (the two directions with low against the two directions with

high psychophysical thresholds: F1,32¼ 6.6029, P¼ 0.015) were found

to be significant. The interaction between the two factors showed a trend

(F2,32¼ 2.5147, P¼ 0.09). A post hoc comparison (Scheffé test) of the

direction indicated a significant effect (P¼ 0.01) and the post hoc

comparison for the group factor revealed significant differences only

for the motion-blind patients (group A, Fig. 6b; all P-values <0.001).

This indicates that patients with MB not only perceived the direction of

motion more often in wrong directions, but misperceive the direction of

motion in the directions with lowest thresholds (Fig. 6b).

Lesion analysis

Lesion location and extent were determined with MRI in all patients. All

lesions were mapped onto the left hemisphere. The comparison of

the superimposed lesion plots of the 10 motion-blind patients (group

A, top of Fig. 7a) with the 11 patients from group B (bottom of Fig. 7a)

showed that different posterior brain areas were damaged in the two

groups (see Fig. 7a). Lesion volume did not differ significantly between

the two patient groups (group A, 14.0� 3.7 cm3; group B, 16.4�
4.3 cm3; mean� 1 SEM; t-test for independent samples, t19¼ �0.415,

P¼ 0.683). Whereas lesion overlap in the patients of group B centred

on one area (green arrow in Fig. 7a), our analysis revealed two discrete

areas in the motion-blind patients (red and yellow arrows, Fig. 7a).

One overlap region across patients of group A was situated at the

occipitotemporal junction and is indicated in Fig. 7a by the red arrow.

The location of this area is concordant with previous anatomical lesion

studies in patients with MB (Barton et al., 1995; Greenlee et al., 1995;

Schenk & Zihl, 1997; Vaina et al., 2001). Lesion location and extent was

also determined in stereotaxic coordinates (Talairach & Tournoux,

1988). The stereotaxic mean and range of this overlap region are given

in Table 4. Stereotaxic analysis showed that this overlap area is in

close proximity to the stereotaxic activation site of area MTþ/V5, as

proposed by numerous neuroimaging studies (Watson et al., 1993;

Fig. 5. This figure depicts the number of DEs for each direction separately for
two patients with unidirectional motion blindness [(a), patient A-8; (b), patient
A-9]. The number of DEs is shown on the right y-axis (scale 0–5). Their
respective direction is indicated below the graphs. Patient A-8 made a total of
eight DEs of which five were in the upwards direction. The remaining three DEs
were in the ipsilesional direction. Patient A-9 (b) made 10 DEs of which seven
were in two directions (contralesional and up).
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de Jong et al., 1994; Dupont et al., 1994, 1997; Tootell et al., 1995;

Goebel et al., 1998). The second overlap region in group Awas located in

the posterior parietal cortex and is indicated by the yellow arrow (Fig. 7a).

It was situated close to the parieto-occipital sulcus including the pre-

cuneus and the cuneus (see Fig. 6a; stereotaxic mean and range are given

in Table 4). This region is located close to an area that has been shown to

be involved in normal visual motion perception in the frontal plane as

well as visual motion in depth (de Jong et al., 1994; Goebel et al., 1998;

Sunaert et al., 1999). Given the strong and direction-selective MDD

deficits in patients A-3, A-6, A-8 and A-9 (uni- or bidirectional MDD

deficit; compare Fig. 1b, d, e and f), the lesions as defined by MRI are

shown for each of these latter patients separately in Fig. 8 (in patient A-9,

Fig. 8a, the reconstructed MRI as used for group lesion analysis is shown,

because the original MRI was no longer available). In one patient the

lesion included the first overlap region (MTþ/V5; Fig. 8a) and in two

patients brain damage included the second overlap region (Fig. 8b and c).

In one patient brain damage was mainly observed in the occipital cortex,

with parietal and temporal extensions (Fig. 8d).

Lesion overlap in group B centred in a different region in the ventral

occipito-temporal cortex that included the anterior cuneus and the

lingual gyrus (green arrow, Fig. 7a). The stereotaxic coordinates for

this overlap region are given in Table 4. A second very small region of

overlap was found in group B in the inferior occipital gyrus [small red

area in Fig. 7a; see horizontal stereotaxic position of �10 (z-axis)].

Figure 7b depicts the two overlap regions in group A (depicted in blue)

in three dimensions and distinguishes them spatially from the overlap

region in group B (green).

Discussion

Direction-selective threshold elevations

Motion blindness is believed to result from circumscribed damage

to direction-selective visual neurons in the cortical visual motion

pathway, especially MT/V5 (Zihl et al., 1983; Nakayama, 1985;

Maunsell & Newsome, 1987; Zeki, 1991). In monkey, the importance

of this pathway and MT/V5 in the perception of motion direction has

been demonstrated by single-unit recordings (Dubner & Zeki, 1971;

Zeki, 1974; Baker et al., 1981; Van Essen et al., 1981; Albright et al.,

1984) showing that MT/V5 contains large numbers of direction-

selective neurons. These neurons are densely organized in columns

of cells tuned to similar directions, whose directional preference

changes incrementally at neighbouring columns. Microstimulation

of MT/V5 neurons (Salzman et al., 1990, 1992) and medial superior

temporal (MST) neurons (Celebrini & Newsome, 1995) has extended

these findings. In an MDD task, microstimulation in both areas

systematically modified a monkey’s choice that depended on the

neuron’s directional preference. Further studies have shown that, in

addition to this columnar directional organization, area MT/V5 is

organized macroscopically in a retinotopic fashion (Gattass & Gross,

1981; Van Essen et al., 1981; Albright & Desimone, 1987; Maunsell &

Van Essen, 1987) suggesting that, in combination with the columnar

directional organization, all directions of motion are represented at

each retinal location.

In accordance with this functional organization, many studies in

humans have presented evidence in favour of retinotopically organized

motion processing. Thus, human lesion studies (Plant et al., 1993;

Barton et al., 1995; Greenlee & Smith, 1997; Schenk & Zihl, 1997) and

studies using cortical electrical stimulation (Blanke et al., 2002) or

transcranial magnetic stimulation of extrastriate cortex (Beckers &

Hömberg, 1992; Hotson et al., 1994; Beckers & Zeki, 1995) were able

to measure MDD deficits which were confined to the visual field

contralateral to brain damage or contralateral to (electrical cortical or

transcranial magnetic) stimulation. More recently, the retinotopic orga-

nization of human MTþ/V5 has also been demonstrated by fMRI

studies (e.g. Tootell et al., 1995; Dukelow et al., 2001; Huk et al., 2002).

The main focus of the present investigation was to find out whether

circumscribed unilateral brain damage to human extrastriate cortex

might lead to a functional deficit in the central visual field reflecting the

Fig. 6. The direction of motion blindness corresponds with the direction of erroneous motion perception. (a) The same patient is depicted as in Fig. 5a. The number of
DEs is grouped depending on the direction-discrimination threshold. In comparison with Fig. 5a, the number of DEs in the directions with the two lowest thresholds
were grouped and compared with the number of DEs in the directions with the two highest thresholds. This was done for all patients and healthy controls in order to
test whether a biased choice in favour of the better (and normally) perceived directions of motion is present for the motion-blind patients. Note that the inverse
correspondence between direction of threshold elevation as suggested in the single motion-blind patient (A-8) is also found in group A (b). This was not the case in
groups B (d) and C (c). Symbols: black, number of directional errors; white, psychophysical threshold in %CM.
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main characteristic of area MTþ/V5: direction selectivity. Although

some previous evidence suggests that this might be the case (Shipp

et al., 1994; Barton et al., 1995), this had not been systematically

investigated in groups of patients with posterior brain damage. Green-

lee & Smith (1997) measured MDD along the four cardinal directions,

but only reported global values. Other studies tested MDD only along

the horizontal axis (Plant et al., 1993; Schenk & Zihl, 1997). However,

Plant & Nakayama (1993) and Barton et al. (1995) described

pathological MDD in the ipsilesional direction while MDD in the

contralesional direction was normal (i.e. horizontal directional aniso-

tropy). This finding was confirmed by Vaina et al. (2001). (The

psychophysical thresholds values for vertical directions were not

analysed quantitatively in the three latter studies.) However, for the

patients with horizontal directional anisotropy, Barton et al., 1995,

page 669) noted that ‘thresholds for vertical motion discrimination

were also elevated’. This suggests the presence of tridirectional MB in

Fig. 7 Lesion analysis of patients with and without motion blindness. (a) Overlap plots for both patient groups. The number of overlapping lesions is indicated by
colour, from blue (n¼ 1) to red (n¼ 6). The centre of overlap is indicated in red for patients in group A (top) and B (bottom). The Talairach coordinates of the
transverse sections are given in the middle of the figure (z coordinates). The brain damage in the motion-blind patients (group A) is depicted in the upper part and that
of group B in the lower part of (a). Note that two centres of overlap were found in motion-blind patients. One area was localized at the temporo-occipital junction in
close proximity to MTþ/V5 (red arrow; see Table 2 for stereotaxic coordinates), the other in the posterior parietal cortex (yellow arrow). Both overlap areas were
anatomically distinct from the centre of overlap in patients from group B, which is shown at the bottom of (a). This latter area was localized on the cuneus and lingual
gyrus and is indicated by a green arrow. (b) Three-dimensional reconstruction of the lesion overlap zones. Lateral (left), posterior (middle) and top view (right) of the
centres of overlap in motion-blind patients (blue) and motion-seeing patients (green). Lesion overlap is shown in a transparent brain volume.
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Barton and colleagues’ patients and is comparable to MDD deficits in

some of the present motion-blind patients. However, by analysing the

discrimination thresholds for each cardinal direction separately, our

data show that MB is not pandirectional or tridirectional, but that MB

significantly predominates in one of the four cardinal directions for all

patients of group A; hence the term ‘direction-selective MB’. Direc-

tion selectivity was especially evident in some of the present patients

with uni- or bi-directional MB whose MB was characterized by an

�100-fold increase in thresholds in one or two directions, but normal

thresholds in the remaining directions. Although psychophysical

studies in healthy subjects have suggested previously that the human

visual cortex processes direction-selective signals (e.g. Levinson &

Sekuler, 1976; Mather, 1980), neural correlates have only recently

been detected. These latter results were based on fMRI measurements

of motion opponency (Heeger et al., 1999) and direction-selective

adaptation (Huk et al., 2001) and found in MTþ/V5 and a number of

other extrastriate areas. The present data corroborate and extend these

previous neuropsychological, psychophysical and neuroimaging find-

ings. The demonstration of direction-selective and unidirectional MB

suggests that this clinical condition might result from selective or

predominant damage to neurons in the cortical motion pathway tuned

to the direction of motion that the subject no longer discriminates

(Dubner & Zeki, 1971; Zeki, 1974; Baker et al., 1981; Van Essen et al.,

1981). Accordingly, we conjecture that neurons encoding intact direc-

tions of motion are less impaired or unimpaired, leading to normal

MDD performance for these directions. However, selective damage to

cells tuned to one direction of motion seems rather improbable because

neurons in, e.g., MT/V5 are densely organized in directional columns,

whose directional preference changes incrementally at neighbouring

columns (Albright et al., 1984). However, Malonek et al. (1994) have

shown that motion direction in MT/V5 is also coded at a more

macroscopic level in neuronal clusters of up to 1 mm2. Evidence from

intracranial stimulation of human extrastriate cortex further suggests

that modules coding single directions of motion might even be as large

as �1 cm2 (Blanke et al., 2002). These authors have induced unidir-

ectional transient MB by focal electrical stimulation of MTþ/V5 and

of other extrastriate sites extending beyond MTþ/V5: MDD in one

direction was completely abolished by electrical stimulation at a given

extrastriate site, while the perception of other motion directions at the

same site remained intact. The present results following chronic focal

brain damage would argue for even larger neuronal modules that

mediate the perception of single directions of motion. Although

Newsome and colleagues (Newsome et al., 1995; Shadlen et al.,

1996; Parker & Newsome, 1998) have shown that the activity of

single direction-selective MT/V5 neurons is closely related to MDD in

monkeys they suggested, based on simulations, that directional mod-

ules ‘are probably composed of at least 100 neurons, but may include

many times this number’ (Shadlen et al., 1996; page 1499). The

present data on psychophysical threshold measurements in human

brain-damaged observers are in agreement with this hypothesis, but

suggest that the size of the direction-selective modules (or neuronal

populations) might be much larger than previously thought. It is thus

conceivable that direction-selective MB (especially in the four patients

with severely elevated thresholds) might have resulted from predo-

minant damage to neuronal populations in MTþ/V5 (Malonek et al.,

1994) that code for the direction which the subject cannot discriminate

anymore. Although stereotaxic lesion analysis revealed damage to

MTþ/V5 in the motion-blind patients, the known directional and

retinotopic organization of MT/V5 and the fact that naturally occurring

brain damage happens by chance, has low areal selectivity and is

generally more extensive than experimental lesions in animals (Dama-

sio et al., 2000), make it rather unlikely that direction-selective MB

results from selective interference with MTþ/V5. Brain damage

almost certainly extented over several neighbouring visual motion

areas and might have damaged direction-selective modules upstream

and/or downstream from MTþ/V5. Based on the directional selectivity

of the MDD deficit in the present patients, it might thus be hypothe-

sized that the visual motion pathway may consist of motion areas in

which cells are macroscopically distributed according to preferred

direction. To our knowledge such an organization, apart from the

results by Malonek et al. (1994), has not yet been described in primate

visual cortex. Alternatively, direction-selective MDD deficits might be

caused by relative predominant coding for one direction of motion in

each MTþ/V5, which has been described in macaque MT/V5 along

the horizontal axis (Dubner & Zeki, 1971). The unilateral loss of one

MTþ/V5 in the present patients might then lead to a direction-

selective MDD deficit caused by predominant directional coding of

the contralesional, undamaged MTþ/V5. This latter mechanism might

account for patients suffering from mildly elevated MDD thresholds,

such as in patients A-5 and A-10. However, the direction-selective

�100-fold increases in MDD thresholds in some of the present patients

with normal MDD in the remaining directions suggests that the latter

mechanism is rather unlikely to account for these patients’ perfor-

mance. Nevertheless, given the presentation of the motion stimulus in

the central visual field, a significant contribution of the contralesional,

undamaged MTþ/V5 to the patients’ MDD deficit cannot be excluded.

Erroneous motion perception

Although MT/V5 neurons are direction selective, they are broadly

tuned and respond sometimes to directions of motion that are <908
apart (Dubner & Zeki, 1971; Zeki, 1974; Albright et al., 1984;

Maunsell & Van Essen, 1987). Based on this broad tuning, a unidirec-

tional stimulus excites a widely distributed population of neurons.

Accordingly, it has been assumed that MDD in monkey is guided

by information contained in direction-selective modules, which

include cells whose optimal direction of motion is different from

the one being discriminated (Newsome et al., 1995; Shadlen et al.,

1996; Parker & Newsome, 1998; Britten et al., 1992). Although the

signalling properties of individual neurons in such direction-selective

modules (or neuronal populations) overlap substantially, this redun-

dancy ensures performance against sources of noise and neuronal loss

as well as increases its computational speed (Shadlen et al., 1996).

Fig. 8 Magnetic resonance imaging (MRI) of the four patients with severe direction-selective motion blindness. (a) The reconstructed 3-D MRI of patient A-9 with a
focal lesion of the left occipito-temporal cortex. (b) T2-weighted MRI of patient A-3, depicting brain damage to the right medial parieto-occipital cortex. Brain
damage was more extensive in patient A-6 (c; T2-weighted MRI) and included the right medial and lateral parieto-occipital cortex as well as right frontal cortex. (d)
Brain damage in patient A-8 was confined to the medial occipital cortex with extensions into temporal and parietal cortex.

Table 4. Lesion overlaps

Group

Stereotaxic coordinates (mm)

X Y Y

A, lateral occipito-temporal 29 (20–38) 79 (72–86) 1 (�4 to þ2)
A, posterior parietal 13 (3–23) 83 (71–95) 26 (20–32)
B, ventral occipito-temporal 14 (0–28) 76 (59–93) 9 (4–14)

Stereotaxic location of the two overlap regions in group A and the overlap
region in group B. Mean as well as overlap surface (range) are given for the
maximal overlap areas.
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Applied to healthy human subjects as well as patients with unidirec-

tional MB, this model predicts that a motion stimulus in a given

direction will concomitantly activate neurons whose optimal direction

of motion is different from the one being discriminated. In the present

study, the combination of direction-selective psychophysical threshold

elevations with direction-selective directional errors in group A sug-

gests that the activation of neurons which encode the direction of

motion for which the patient is blind might be outweighed by the

concomitant activation of neurons which preferentially code other

directions. The higher number of DEs in group A patients provides

support for this hypothesis. Most importantly, DEs in group A were

shown to be direction-selective. In conclusion, these data suggest that

MB is not only characterized by a quantitative direction-specific

increase in psychophysical threshold measurements, but also leads

to a qualitative impairment characterized by direction-specific mis-

perceptions during MDD. Direction-selective DEs have also been

described in a severely motion-blind patient with bilateral posterior

brain damage (Shipp et al., 1994; patient initially described by Zihl

et al., 1983). In addition, small directional biases during MDD have

also been described in healthy subjects (Raymond, 1994; Gross et al.,

1998) and visual inspection shows that it was also found for subjects in

group C and patients in group B in the present study (see Fig. 4). It

could thus be argued that DEs in motion-blind patients (group A)

merely reflect this latter directional bias. However, two arguments

speak against this interpretation. Firstly, statistical analysis showed

that only the motion-blind patients systematically misperceived

motion direction in two of four tested directions, whereas DEs in

healthy controls (group C) and brain lesioned controls (group B) were

found to be randomly distributed over all tested directions. Secondly,

only in the motion-blind patients did the statistical analysis suggest an

inverse relationship between the number of DEs in a given direction

and its respective threshold value. Although statistical analysis only

showed a trend for the interaction between both latter variables, our

data suggest that the two variables relate functionally to each other. It

could also be argued that this functional relationship might be caused

by a methodological artefact (a patient who always responds ‘right’

independently of which motion direction is shown would have a

normal threshold for rightward motion but pathological thresholds

for the other directions). However, during testing we never encoun-

tered a patient who responded in this fashion. Such patients are likely

to suffer from other cognitive deficits that were searched for in an

extensive neuropsychological examination that was carried out prior to

motion testing (see Materials and methods). A voluntary bias (espe-

cially for testing near the psychophysical threshold) is also unlikely

because the different directions were tested in random fashion in

parallel order. In addition, whereas most of the motion-blind patients

realized their difficulties in MDD they were never aware of a direc-

tional motion deficit during testing or during situations in everyday life

(as noted for the patient reported by Zihl et al. (1983, 1991) who

suffered from severe MB related to bilateral brain damage). Thus,

direction selectivity and inverse relationship of DEs with psychophy-

sical thresholds are likely to be functional deficits in the motion-blind

patients. Finally, direction-selective DEs have also been described in a

single patient with left medial occipital and right parieto-occipital

brain damage, but residual visual capacities in his blind hemifield

(blindsight; patient GY, Blythe et al., 1987; Zeki & ffytche, 1998).

However, inspection of the reported deficit of patient GY shows that,

despite this behavioural similarity, there are many important phenom-

enological and behavioural differences as well as methodological and

clinical differences between former studies and the present investiga-

tion. Most importantly, we show direction-selective DEs and threshold

increases in a group of 10 patients and dissociate this behavioural

pattern from a control group of patients with medial occipital damage

similar to patient GY (group B) who shows neither pathological

threshold elevations nor pathological increase in DEs. In addition,

investigations in patient GY were carried out many years following

brain damage (>11 years) allowing for extensive reorganization,

whereas the examination of the present patients was carried out shortly

after the occurrence of brain damage. Finally, patient GY also suffered

from additional right parieto-occipital brain damage (partially con-

cordant with the parieto-occipital overlap region in group A; see Brent

et al., 1994). It can thus not be excluded that this right hemispheric

brain damage influenced his MDD performance. In conclusion, these

data suggest that quantitative and qualitative direction-selective MB is

linked to extrastriate cortical damage. Most models of MDD hypothe-

size that the perception of motion direction results from the relative

difference between modules tuned to different directions (e.g. Mather,

1980; Simoncelli & Heeger, 1998). In accordance, we speculate that

direction-selective cell loss in MTþ/V5 and/or other visual motion

areas in motion-blind patients leads to a pathological imbalance

between the different directional populations disfavouring the popula-

tion that codes for the direction of MB: populations encoding for less

impaired directions of motion are favoured and their stronger relative

activation might lead to the illusory and erroneous perception of a

direction of motion that was not shown.

Damage to the lateral occipito-temporal cortex or to the
posterior parietal cortex leads to motion blindness

The present lesion analysis shows that brain damage in motion-blind

patients is anatomically distinct from brain damage in motion-seeing

patients. Unexpectedly, brain damage in patients with MB centred in

two discrete areas: in the lateral temporo-occipital cortex and in the

parieto-occipital cortex. This suggests that brain damage to either

region leads to direction-selective MB (as defined in the present study)

and suggests that both regions are involved in the discrimination of

motion direction.

Our data confirm previous anatomical studies in patients with MB

which have suggested that damage to the lateral temporo-occipital

cortex causes MB (Barton et al., 1995; Greenlee et al., 1995; Schenk &

Zihl, 1997; Vaina et al., 2001). However, stereotaxic comparison of the

site of brain damage in normalized Talairach space (Talairach &

Tournoux, 1988) with the location of visual motion areas as defined

by fMRI and PET (in healthy subjects) has not been reported pre-

viously. The present study shows that lateral temporo-occipital brain

damage in motion-blind patients is situated in close proximity to area

MTþ/V5 as defined anatomically (Dumoulin et al., 2000) and func-

tionally by neuroimaging studies (Watson et al., 1993; de Jong et al.,

1994; Dupont et al., 1994; Tootell et al., 1995; Goebel et al., 1998) as

well as intracranial electrical stimulation (Blanke et al., 2002).

However, our analysis shows that damage to not only MTþ/V5, but

also to the posterior parietal cortex, may lead to MB. Previous lesion

studies in patients with MB have not implicated this posterior parietal

region in visual motion perception (Barton et al., 1995; Greenlee et al.,

1995; Schenk & Zihl, 1997) and Vaina et al. (2001), who investigated

the effects of different sites of brain damage on MDD, did not

investigate patients with damage to the posterior parietal cortex.

However, several neuroimaging studies have shown that this region

is strongly activated by visual motion in the frontal plane as well as in

depth (de Jong et al., 1994; Goebel et al., 1998; Sunaert et al., 1999).

Additional neuroimaging evidence for a potential role of this posterior

parietal area in mediating motion perception was provided by a PET

study (Shipp et al., 1994). This study examined brain activation in

response to consciously perceived and correctly discriminated motion

direction in the severely motion-blind patient who was initially
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reported by Zihl et al. (1983). In this patient with bilateral damage to

MTþ/V5 (Zihl et al., 1991), the posterior parietal cortex, concordant

with the second lesion overlap region in the present study, was found to

be the region most activated by motion stimuli which were discrimi-

nated correctly in �80% of the trials (Shipp et al., 1994). In line with

this evidence, our results point to a significant contribution of the

parieto-occipital cortex in motion perception. Its stereotaxic location

and anatomical location at the parieto-occipital sulcus suggests that

this region might represent or include the human homologue of

macaque areas V6 and V6A (Shipp et al., 1996; Galetti et al.,

1999a,b), which have been shown to be involved in motion perception

and to harbour direction-selective neurons (Galetti et al., 1999a,b).

Lesion location in the four patients with severe uni- or bi-directional

MB further suggests that damage, suggested by group analysis, to

either area might lead to direction-selective MB. Although the func-

tional and anatomical differences between the lateral temporo-occi-

pital cortex and parieto-occipital cortex make it very likely that the

functional consequences following cortical damage to either region

should differ, the present findings show that unilateral damage to either

part of cortex also has similar functional consequences as measured in

the current study.
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