2,537 research outputs found

    Characteristics of anomalously high multiplicity cosmic ray interactions

    Get PDF
    Six events with the number of secondaries ranging from 250 to several thousands were registered by an installation consisting of a thin graphite target, above and under which are placed photolayers followed by the usual lead X-ray film and emulsion chambers. Data concerning the number of secondaries and their angular distribution are given. The variance of the angular distribution is compared with data obtained at accelerator energies

    Spectro-Polarimetric Properties of Sunquake Sources in X1.5 Flare and Evidence for Electron and Proton Beam Impacts

    Full text link
    The first significant sunquake event of Solar Cycle 25 was observed during the X1.5 flare of May 10, 2022, by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory. We perform a detailed spectro-polarimetric analysis of the sunquake photospheric sources, using the Stokes profiles of the FeI 6173A line, reconstructed from the HMI linear and circular polarized filtergrams. The results show fast variations of the continuum emission with rapid growth and slower decay lasting 3-4 min, coinciding in time with the hard X-ray impulses observed by the Konus instrument onboard the Wind spacecraft. The variations in the line core appeared slightly ahead of the variations in the line wings, showing that the heating started in the higher atmospheric layers and propagated downward. The most significant feature of the line profile variations is the transient emission in the line core in three of the four sources, indicating intense, impulsive heating in the lower chromosphere and photosphere. In addition, the observed variations of the Stokes profiles reflect transient and permanent changes in the magnetic field strength and geometry in the sunquake sources. Comparison with the radiative hydrodynamics models shows that the physical processes in the impulsive flare phase are substantially more complex than those predicted by proton and electron beam flare models currently presented in the literature.Comment: 15 pages, 12 figures, accepted for publication in ApJ, for associated mpeg file, see https://spaceweather.com/images2022/12may22/Sunquake_X1.5_flare_051022_1.mp

    The impact of globalization on higher education system in Russia: the principles of individual approach to students

    Full text link
    Авторы рассматривают вопросы влияния глобализации на систему высшего образования в России, а также адаптации студентов-иностранцев к неродной среде с позиции необходимости индивидуального подхода в оценке их успеваемости.The authors consider the impact of globalization on higher education system in Russia, as well as adaptation of foreign students to non-native environment position required an individual approach in the assessment of their learning

    Electrotransport and magnetic properies of Cr-GaSb spintronic materials synthesized under high pressure

    Full text link
    Electrotarnsport and magnetic properties of new phases in the system Cr-GaSb were studied. The samples were prepared by high-pressure (P=6-8 GPa) high-temperature treatment and identified by x-ray diffraction and scanning electron microscopy (SEM). One of the CrGa2_2Sb2_2 phases with an orthorhombic structure Iba2Iba2 has a combination of ferromagnetic and semiconductor properties and is potentially promising for spintronic applications. Another high-temperature phase is paramagnetic and identified as tetragonal I4/mcmI4/mcm

    The "Horizon-T" Experiment: Extensive Air Showers Detection

    Get PDF
    Horizon-T is an innovative detector system constructed to study Extensive Air Showers (EAS) in the energy range above 10^16 eV coming from a wide range of zenith angles (0 - 85 degrees). The system is located at Tien Shan high-altitude Science Station of Lebedev Physical Institute of the Russian Academy of Sciences at approximately 3340 meters above the sea level. It consists of eight charged particle detection points separated by the distance up to one kilometer as well as optical detector subsystem to view the Vavilov-Cerenkov light from the EAS. The time resolution of charged particles and Vavilov-Cerenkov light photons passage of the detector system is a few ns. This level of resolution allows conducting research of atmospheric development of individual EAS.Comment: Initial technical note for Horizon-T experiment, updated with recent detector upgrades, 11/2016. Updated 12/2017 with minor edits. Large upgrade will be in another articl

    Interplay between magnetism and superconductivity and appearance of a second superconducting transition in alpha-FeSe at high pressure

    Full text link
    We synthesized tetragonal alpha-FeSe by melting a powder mixture of iron and selenium at high pressure. Subsequent annealing at normal pressure results in removing traces of hexagonal beta- FeSe, formation of a rather sharp transition to superconducting state at Tc ~ 7 K, and the appearance of a magnetic transition near Tm = 120 K. Resistivity and ac-susceptibility were measured on the annealed sample at hydrostatic pressure up to 4.5 GPa. A magnetic transition visible in ac-susceptibility shifts down under pressure and the resistive anomaly typical for a spin density wave (SDW) antiferromagnetic transition develops near the susceptibility anomaly. Tc determined by the appearance of a diamagnetic response in susceptibility, increases linearly under pressure at a rate dTc/dP = 3.5 K/GPa. Below 1.5 GPa, the resistive superconducting transition is sharp; the width of transition does not change with pressure; and, Tc determined by a peak in drho/dT increases at a rate ~ 3.5 K/GPa. At higher pressure, a giant broadening of the resistive transition develops. This effect cannot be explained by possible pressure gradients in the sample and is inherent to alpha-FeSe. The dependences drho(T)/dT show a signature for a second peak above 3 GPa which is indicative of the appearance of another superconducting state in alpha-FeSe at high pressure. We argue that this second superconducting phase coexists with SDW antiferromagnetism in a partial volume fraction and originates from pairing of charge carriers from other sheets of the Fermi surface

    Holonomic functions of several complex variables and singularities of anisotropic Ising n-fold integrals

    Full text link
    Lattice statistical mechanics, often provides a natural (holonomic) framework to perform singularity analysis with several complex variables that would, in a general mathematical framework, be too complex, or could not be defined. Considering several Picard-Fuchs systems of two-variables "above" Calabi-Yau ODEs, associated with double hypergeometric series, we show that holonomic functions are actually a good framework for actually finding the singular manifolds. We, then, analyse the singular algebraic varieties of the n-fold integrals χ(n) \chi^{(n)}, corresponding to the decomposition of the magnetic susceptibility of the anisotropic square Ising model. We revisit a set of Nickelian singularities that turns out to be a two-parameter family of elliptic curves. We then find a first set of non-Nickelian singularities for χ(3) \chi^{(3)} and χ(4) \chi^{(4)}, that also turns out to be rational or ellipic curves. We underline the fact that these singular curves depend on the anisotropy of the Ising model. We address, from a birational viewpoint, the emergence of families of elliptic curves, and of Calabi-Yau manifolds on such problems. We discuss the accumulation of these singular curves for the non-holonomic anisotropic full susceptibility.Comment: 36 page

    Specific Heat Discontinuity, deltaC, at Tc in BaFe2(As0.7P0.3)2 - Consistent with Unconventional Superconductivity

    Full text link
    We report the specific heat discontinuity, deltaC/Tc, at Tc = 28.2 K of a collage of single crystals of BaFe2(As0.7P0.3)2 and compare the measured value of 38.5 mJ/molK**2 with other iron pnictide and iron chalcogenide (FePn/Ch) superconductors. This value agrees well with the trend established by Bud'ko, Ni and Canfield who found that deltaC/Tc ~ a*Tc**2 for 14 examples of doped Ba1-xKxFe2As2 and BaFe2-xTMxAs2, where the transition metal TM=Co and Ni. We extend their analysis to include all the FePn/Ch superconductors for which deltaC/Tc is currently known and find deltaC/Tc ~ a*Tc**1.9 and a=0.083 mJ/molK**4. A comparison with the elemental superconductors with Tc>1 K and with A-15 superconductors shows that, contrary to the FePn/Ch superconductors, electron-phonon-coupled conventional superconductors exhibit a significantly different dependence of deltaC on Tc, namely deltaC/Tc ~ Tc**0.9. However deltaC/gamma*Tc appears to be comparable in all three classes (FePn/Ch, elemental and A-15) of superconductors with, e. g., deltaC/gamma*Tc=2.4 for BaFe2(As0.7P0.3)2. A discussion of the possible implications of these phenomenological comparisons for the unconventional superconductivity believed to exist in the FePn/Ch is given.Comment: some disagreement in reference and footnote numbering with the published versio
    corecore