4 research outputs found

    ZINC OXIDE NANORODS AS AN INTRACELLULAR pH SENSOR

    Get PDF
    pH measurements using two kind of samples, namely zinc oxide (ZnO) nanorods of 300nm in diameter and 10µm in length grown on 2D macro-porous periodic structures (2DMPPS) and plane n-Si substrates and ZnO nanorods of 60nm in diameter and 500nm in length grown on the silver coated tip of glass capillary (D=0.7µm). We found that the sensitivity of ZnO nanorods increases with reductions in size from (35mV/pH for D=300nm and L=10µm) to (58mV/pH for D=50nm and L=1µm) using the site binding model. The potential difference for the ZnO nanorods electrode vs. Ag/AgCl electrode showed a high sensitivity range for ZnO nanorods grown on 2DMPPS n-Si, as compared to plane n-Si, and had a sensitivity equal to 51.88mV/pH at 22oC for the ZnO on the capillary tip for pH (4-12) in buffer solutions. Vertically nanoelectrodes of this type can be applied to penetrate a single living cell without causing cell apoptosis

    Acetylcholine Detection at Micromolar Concentrations with the Use of an Artificial Receptor-Based Fluorescence Switch

    No full text
    An inclusion complex between water-soluble p-sulfocalix[n]arene (Cn, n = 4, 6, 8) and the chromophore trans-4-[4-(dimethylamino)styryl]-1-methylpyridinium-p-toluenesulfonate (D) formed the basis for a highly sensitive sensor for the selective detection of neurotransmitter acetylcholine (ACh). Formation of the [Cn·D] complex (Ka = ∼105 M-1) was accompanied by a drastic increase (up to 20−60-fold) in the chromophore relative quantum yield and by a large hypsochromic shift of the emission band maximum. The observed optical effects are fully reversible:  ACh displaces the chromophore molecules from the calixarene cavity as shown by the reappearance of the free chromophore emission band. Formation and dissociation of the complex were studied by fluorescence, 1H NMR, and UV−vis absorption spectroscopies. The [Cn·D] complex is capable of sensing ACh selectively in solution at sub-micromolar concentrations. Immobilization of monocarboxyl p-sulfocalix[4]arene (C4m) on an oxide-containing silicon surface is in keeping with its properties, such as chromophore binding and the ability of the immobilized inclusion complex to detect ACh. The unique [Cn·D] complex optical switching paves the way for application in ACh imaging and optoelectronic sensing
    corecore