1,856 research outputs found

    High-energy scale revival and giant kink in the dispersion of a cuprate superconductor

    Full text link
    In the present photoemission study of a cuprate superconductor Bi1.74Pb0.38Sr1.88CuO6+delta, we discovered a large scale dispersion of the lowest band, which unexpectedly follows the band structure calculation very well. The incoherent nature of the spectra suggests that the hopping-dominated dispersion occurs possibly with the assistance of local spin correlations. A giant kink in the dispersion is observed, and the complete self-energy containing all interaction information is extracted for a doped cuprate in the low energy region. These results recovered significant missing pieces in our current understanding of the electronic structure of cuprates.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Lett. on May 21, 200

    Hybrid plasma-catalytic steam reforming of toluene as a biomass tar model compound over Ni/Al₂O₃ catalysts

    Get PDF
    In this study, plasma-catalytic steam reforming of toluene as a biomass tar model compound was carried out in a coaxial dielectric barrier discharge (DBD) plasma reactor. The effect of Ni/Al2O3 catalysts with different nickel loadings (5–20 wt%) on the plasma-catalytic gas cleaning process was evaluated in terms of toluene conversion, gas yield, by-products formation and energy efficiency of the plasma-catalytic process. Compared to the plasma reaction without a catalyst, the combination of DBD with the Ni/Al2O3 catalysts significantly enhanced the toluene conversion, hydrogen yield and energy efficiency of the hybrid plasma process, while significantly reduced the production of organic by-products. Increasing Ni loading of the catalyst improved the performance of the plasma-catalytic processing of toluene, with the highest toluene conversion of 52% and energy efficiency of 2.6 g/kWh when placing the 20 wt% Ni/Al2O3 catalyst in the plasma. The possible reaction pathways in the hybrid plasma-catalytic process were proposed through the combined analysis of both gas and liquid products

    Topographical changes of ground surface affected by the shelterbelt along the Tarim Desert Highway

    Get PDF
    To study the effects of sand protection project on modern aeolian landform, the types, distribution, and intensity of topographical changes of the ground surface affected by the shelterbelt along the Tarim Desert Highway were determined by measuring the deflation and deposition of sand surface in the Tazhong area located in the hinterland of the Taklimakan Desert. The results showed that (1) the newly-formed landform in sand protection systems is dominated by aeolian deposition including the small-scale Nabkha Dunes, the medium-scale sheet-like sand deposition and the large-scale ridge-like sand deposition. To some degree, aeolian deflation landform can also be formed in the open space in the shelterbelt. Furthermore, it is difficult for aeolian deflation landform to develop in a large scale in the interdunes. However, aeolian deflation landform can be developed in a large-scale on the windward slope of secondary dunes in longitudinal complex sand ridges; (2) on the windward side of the sand protection systems, both the morphology and strike of dwarf mobile dunes in the interdunes are changed by the sand-obstructing forest belts and the ridge-like sand deposition around it. The windward slope of the ridge-like deposition around the sand-obstructing forest belt forms a stable ground surface. After being damaged by forward-moving dunes in a short period, the ground surface is recovered gradually; (3) on the leeward side of the sand protection systems, aeolian deflations are formed widely. Particularly, the deflation depression is formed in the interdunes. In addition, the dunes in the region with highly topographic relief are cut flat by aeolian deflations; thereafter its relief of topography is reduced. The above analysis indicates that shelterbelts have obvious effects on the windward wind-sand flux in terms of dissipating energy and intercepting sand. With the recovery of wind velocity on the leeward side of the sand protection systems, the wind-sand flux gradually tends to be unsaturated; therefore the sand surface deflation is formed

    Classification and regionalization of the forming environment of windblown sand disasters along the Tarim Desert Highway

    Get PDF
    Through the systematic field survey and observations, the factor quantification as well as setting the criteria, the sand disaster-forming environment along the Tarim Desert Highway can be divided into four grades by the classification and regionalization based on fuzzy mathematics. The length of the regions with significant sand disaster accounted for 37.1% of the total highway length. Particularly, the area along the Tarim Desert Highway, based on the sand disaster-forming environment classification as well as the difference in the five basic landform units along the highway, combined with the difference of wind regime, can be divided into five regions, in which the length of the regions suffering severe sand damage occupied 64.3% of the total highway length. In addition, the index of disaster formation grade along the highway decreased from north to south, showing a repeated spatial pattern in small length scales

    Clinical and functional effects of mutations in the DAX-1 gene in patients with adrenal hypoplasia congenita

    Get PDF
    Adrenal hypoplasia congenita (AHC) is an X-linked disorder caused by mutations in a gene referred to as DAX-1. AHC is characterized by adrenal insufficiency and failure to undergo puberty because of hypogonadotropic hypogonadism. The DAX-1 protein is structurally related to orphan nuclear receptors, although it lacks the characteristic zinc finger DNA-binding domain that is highly conserved in other members of this family. In this report, we describe the clinical features and genetic alterations in six families with AHC. These patients reveal the variable clinical presentation of adrenal insufficiency in AHC and underscore the importance of considering this diagnosis. Nonsense mutations that introduce a stop codon were found in three cases (W171X, W171X, Y399X). Frameshift mutations (405delT, 501delA, and 702delC), each of which resulted in a premature stop codon at amino acid 263, were found in the other three families. Three of these mutations (Y399X, 405delT, 702delC) are novel. Using transient gene expression assays to assess DAX-1 function, these mutations were shown to eliminate the ability of DAX-1 to repress the transcription of genes that are stimulated by a related nuclear receptor, steroidogenic factor-1. These studies reveal the variable clinical presentation of DAX-1 mutations and emphasize the value genetic testing in boys with primary adrenal insufficiency and suspected X-linked AHC

    Sequence Effect of Self-Assembling Peptides on the Complexation and In Vitro Delivery of the Hydrophobic Anticancer Drug Ellipticine

    Get PDF
    A special class of self-assembling peptides has been found to be capable of stabilizing the hydrophobic anticancer agent ellipticine in aqueous solution. Here we study the effect of peptide sequence on the complex formation and its anticancer activity in vitro. Three peptides, EAK16-II, EAK16-IV and EFK16-II, were selected to have either a different charge distribution (EAK16-II vs. EAK16-IV) or a varying hydrophobicity (EAK16-II vs. EFK16-II). Results on their complexation with ellipticine revealed that EAK16-II and EAK16-IV were able to stabilize protonated ellipticine or ellipticine microcrystals depending on the peptide concentration; EFK16-II could stabilize neutral ellipticine molecules and ellipticine microcrystals. These different molecular states of ellipticine were expected to affect ellipticine delivery. The anticancer activity of these complexes was tested against two cancer cell lines: A549 and MCF-7, and related to the cell viability. The viability results showed that the complexes with protonated ellipticine were effective in eradicating both cancer cells (viability <0.05), but their dilutions in water were not stable, leading to a fast decrease in their toxicity. In contrast, the complexes formulated with EFK16-II were relatively stable upon dilution, but their original toxicity was relatively low compared to that with protonated ellipticine. Overall, the charge distribution of the peptides seemed not to affect the complex formation and its therapeutic efficacy in vitro; however, the increase in hydrophobicity of the peptides significantly altered the state of stabilized ellipticine and increased the stability of the complexes. This work provides essential information for peptide sequence design in the development of self-assembling peptide-based delivery of hydrophobic anticancer drugs

    Counter-current chromatography for the separation of terpenoids: A comprehensive review with respect to the solvent systems employed

    Get PDF
    Copyright @ 2014 The Authors.This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.Natural products extracts are commonly highly complex mixtures of active compounds and consequently their purification becomes a particularly challenging task. The development of a purification protocol to extract a single active component from the many hundreds that are often present in the mixture is something that can take months or even years to achieve, thus it is important for the natural product chemist to have, at their disposal, a broad range of diverse purification techniques. Counter-current chromatography (CCC) is one such separation technique utilising two immiscible phases, one as the stationary phase (retained in a spinning coil by centrifugal forces) and the second as the mobile phase. The method benefits from a number of advantages when compared with the more traditional liquid-solid separation methods, such as no irreversible adsorption, total recovery of the injected sample, minimal tailing of peaks, low risk of sample denaturation, the ability to accept particulates, and a low solvent consumption. The selection of an appropriate two-phase solvent system is critical to the running of CCC since this is both the mobile and the stationary phase of the system. However, this is also by far the most time consuming aspect of the technique and the one that most inhibits its general take-up. In recent years, numerous natural product purifications have been published using CCC from almost every country across the globe. Many of these papers are devoted to terpenoids-one of the most diverse groups. Naturally occurring terpenoids provide opportunities to discover new drugs but many of them are available at very low levels in nature and a huge number of them still remain unexplored. The collective knowledge on performing successful CCC separations of terpenoids has been gathered and reviewed by the authors, in order to create a comprehensive document that will be of great assistance in performing future purifications. © 2014 The Author(s)

    GPCR Genes Are Preferentially Retained after Whole Genome Duplication

    Get PDF
    One of the most interesting questions in biology is whether certain pathways have been favored during evolution, and if so, what properties could cause such a preference. Due to the lack of experimental evidence, whether select gene families have been preferentially retained over time after duplication in metazoan organisms remains unclear. Here, by syntenic mapping of nonchemosensory G protein-coupled receptor genes (nGPCRs which represent half the receptome for transmembrane signaling) in the vertebrate genomes, we found that, as opposed to the 8–15% retention rate for whole genome duplication (WGD)-derived gene duplicates in the entire genome of pufferfish, greater than 27.8% of WGD-derived nGPCRs which interact with a nonpeptide ligand were retained after WGD in pufferfish Tetraodon nigroviridis. In addition, we show that concurrent duplication of cognate ligand genes by WGD could impose selection of nGPCRs that interact with a polypeptide ligand. Against less than 2.25% probability for parallel retention of a pair of WGD-derived ligands and a pair of cognate receptor duplicates, we found a more than 8.9% retention of WGD-derived ligand-nGPCR pairs–threefold greater than one would surmise. These results demonstrate that gene retention is not uniform after WGD in vertebrates, and suggest a Darwinian selection of GPCR-mediated intercellular communication in metazoan organisms

    Inhibition of Ion Channels and Heart Beat in Drosophila by Selective COX-2 Inhibitor SC-791

    Get PDF
    Recent findings suggest that modulation of ion channels might be implicated in some of the clinical effects of coxibs, selective inhibitors of cyclooxygenase-2 (COX-2). Celecoxib and its inactive analog 2,5-dimethyl-celecoxib, but not rofecoxib, can suppress or augment ionic currents and alter functioning of neurons and myocytes. To better understand these unexpected effects, we have recently investigated the mechanism of inhibition of human Kv2.1 channels by a highly selective COX-2 inhibitor SC-791. In this study we have further explored the SC-791 action on ion channels and heartbeat in Drosophila, which lacks cyclooxygenases and thus can serve as a convenient model to study COX-2-independent mechanisms of coxibs. Using intracellular recordings in combination with a pharmacological approach and utilizing available Drosophila mutants, we found that SC-791 inhibited voltage-activated K+ and L-type Ca2+ channels in larval body-wall muscles and reduced heart rate in a concentration-dependent manner. Unlike celecoxib and several other K+ channel blockers, SC-791 did not induce arrhythmia. Instead, application of SC-791 resulted in a dramatic slowing of contractions and, at higher concentrations, in progressively weaker contractions with gradual cessation of heartbeat. Isradipine, a selective blocker of L-type Ca2+ channels, showed a similar pattern of heart arrest, though no prolongation of contractions was observed. Ryanodine was the only channel modulating compound of those tested additionally that was capable of slowing contractions. Like SC-791, ryanodine reduced heart rate without arrhythmia. However, it could not stop heartbeat completely even at 500 µM, the highest concentration used. The magnitude of heart rate reduction, when SC-791 and ryanodine were applied together, was smaller than expected for independent mechanisms, raising the possibility that SC-791 might be interfering with excitation-contraction coupling in Drosophila heart
    corecore