935 research outputs found

    Effects of Krill Oil on serum lipids of hyperlipidemic rats and human SW480 cells

    Get PDF
    © 2008 Zhu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Burkholderia pseudomallei in soil samples from an oceanarium in Hong Kong detected using a sensitive PCR assay

    Get PDF
    published_or_final_versio

    Clinical correlation of nuclear survivin in esophageal squamous cell carcinoma

    Get PDF
    To examine the correlation of survivin (both total and nuclear survivin) with clinicopathological parameters of esophageal squamous cell carcinoma (ESCC) patients. Tumors and non-tumor tissues near the proximal resection margins were resected from ESCC patients undergone esophagectomy. Quantitative polymerase chain reaction (qPCR) was performed to detect survivin mRNA expression level in the 10 paired tumor and adjacent non-tumor tissues. To confirm with the clinical situation, survivin mRNA and protein expression were measured by qPCR and immunoblot, respectively, in 5 ESCC cell lines and a non-neoplastic esophageal epithelial cell line. Immunohistochemistry was employed to reveal the cellular localization of survivin in tumor tissues isolated from the 64 ESCC patients undergone surgery alone. Up-regulation of survivin mRNA and protein was found in 5 ESCC lines (HKESC-1, HKESC-2, HKESC-3, HKESC-4, and SLMT-1) when compared to a non-neoplastic esophageal epithelial cell line NE-1. In particular, HKESC-3, HKESC-4, and SLMT-1 cells demonstrated ~50-fold increase in survivin mRNA. High level of survivin mRNA in tumor tissues when compared to non-tumor tissues was found in 70 % (7 of 10) of clinical cases. The increase in expression ranged from ~twofold to ~16-fold. Immunohistochemistry results showed that survivin was found at the cell nuclei in all specimens examined. Nuclear expression of survivin was inversely associated with the likelihood of developing nodal metastasis (p = 0.021) and significantly associated with early-stage ESCC (p = 0.039). Nuclear survivin could serve as a marker for indicating disease status in ESCC patients. © 2012 The Author(s).published_or_final_versio

    Metabolomic profiling of Burkholderia pseudomallei using UHPLC-ESI-Q-TOF-MS reveals specific biomarkers including 4-methyl-5-thiazoleethanol and unique thiamine degradation pathway

    Get PDF
    © 2015 Lau et al.Background: Burkholderia pseudomallei is an emerging pathogen that causes melioidosis, a serious and potentially fatal disease which requires prolonged antibiotics to prevent relapse. However, diagnosis of melioidosis can be difficult, especially in culture-negative cases. While metabolomics represents an uprising tool for studying infectious diseases, there were no reports on its applications to B. pseudomallei. To search for potential specific biomarkers, we compared the metabolomics profiles of culture supernatants of B. pseudomallei (15 strains), B. thailandensis (3 strains), B. cepacia complex (14 strains), P. aeruginosa (4 strains) and E. coli (3 strains), using ultra-high performance liquid chromatography-electrospray ionization-quadruple time-of-flight mass spectrometry (UHPLC-ESI-Q-TOF-MS). Multi- and univariate analyses were used to identify specific metabolites in B. pseudomallei. Results: Principal component and partial-least squares discrimination analysis readily distinguished the metabolomes between B. pseudomallei and other bacterial species. Using multi-variate and univariate analysis, eight metabolites with significantly higher levels in B. pseudomallei were identified. Three of the eight metabolites were identified by MS/MS, while five metabolites were unidentified against database matching, suggesting that they may be potentially novel compounds. One metabolite, m/z 144.048, was identified as 4-methyl-5-thiazoleethanol, a degradation product of thiamine (vitamin B1), with molecular formula C6H9NOS by database searches and confirmed by MS/MS using commercially available authentic chemical standard. Two metabolites, m/z 512.282 and m/z 542.2921, were identified as tetrapeptides, Ile-His-Lys-Asp with molecular formula C22H37N7O7 and Pro-Arg-Arg-Asn with molecular formula C21H39N11O6, respectively. To investigate the high levels of 4-methyl-5-thiazoleethanol in B. pseudomallei, we compared the thiamine degradation pathways encoded in genomes of B. pseudomallei and B. thailandensis. While both B. pseudomallei and B. thailandensis possess thiaminase I which catalyzes degradation of thiamine to 4-methyl-5-thiazoleethanol, thiM, which encodes hydroxyethylthiazole kinase responsible for degradation of 4-methyl-5-thiazoleethanol, is present and expressed in B. thailandensis as detected by PCR/RT-PCR, but absent or not expressed in all B. pseudomallei strains. This suggests that the high 4-methyl-5-thiazoleethanol level in B. pseudomallei is likely due to the absence of hydroxyethylthiazole kinase and hence reduced downstream degradation. Conclusion: Eight novel biomarkers, including 4-methyl-5-thiazoleethanol and two tetrapeptides, were identified in the culture supernatant of B. pseudomallei.published_or_final_versio

    Acoustic black holes for relativistic fluids

    Full text link
    We derive a new acoustic black hole metric from the Abelian Higgs model. In the non-relativistic limit, while the Abelian Higgs model becomes the Ginzburg-Landau model, the metric reduces to an ordinary Unruh type. We investigate the possibility of using (type I and II) superconductors as the acoustic black holes. We propose to realize experimental acoustic black holes by using spiral vortices solutions from the Navier-stokes equation in the non-relativistic classical fluids.Comment: 16 pages. typos corrected, contents expande

    Characterization of intrinsic properties of cingulate pyramidal neurons in adult mice after nerve injury

    Get PDF
    The anterior cingulate cortex (ACC) is important for cognitive and sensory functions including memory and chronic pain. Glutamatergic excitatory synaptic transmission undergo long-term potentiation in ACC pyramidal cells after peripheral injury. Less information is available for the possible long-term changes in neuronal action potentials or intrinsic properties. In the present study, we characterized cingulate pyramidal cells in the layer II/III of the ACC in adult mice. We then examined possible long-term changes in intrinsic properties of the ACC pyramidal cells after peripheral nerve injury. In the control mice, we found that there are three major types of pyramidal cells according to their action potential firing pattern: (i) regular spiking (RS) cells (24.7%), intrinsic bursting (IB) cells (30.9%), and intermediate (IM) cells (44.4%). In a state of neuropathic pain, the population distribution (RS: 21.3%; IB: 31.2%; IM: 47.5%) and the single action potential properties of these three groups were indistinguishable from those in control mice. However, for repetitive action potentials, IM cells from neuropathic pain animals showed higher initial firing frequency with no change for the properties of RS and IB neurons from neuropathic pain mice. The present results provide the first evidence that, in addition to synaptic potentiation reported previously, peripheral nerve injury produces long-term plastic changes in the action potentials of cingulate pyramidal neurons in a cell type-specific manner

    Mitotic Spindle Orients Perpendicular to the Forces Imposed by Dynamic Shear

    Get PDF
    Orientation of the division axis can determine cell fate in the presence of morphogenetic gradients. Understanding how mitotic cells integrate directional cues is therefore an important question in embryogenesis. Here, we investigate the effect of dynamic shear forces on confined mitotic cells. We found that human epithelial cells (hTERT-RPE1) as well as MC3T3 osteoblasts align their mitotic spindle perpendicular to the external force. Spindle orientation appears to be a consequence of cell elongation along the zero-force direction in response to the dynamic shear. This process is a nonlinear response to the strain amplitude, requires actomyosin activity and correlates with redistribution of myosin II. Mechanosteered cells divide normally, suggesting that this mechanism is compatible with biological functions

    A New Era in the Quest for Dark Matter

    Full text link
    There is a growing sense of `crisis' in the dark matter community, due to the absence of evidence for the most popular candidates such as weakly interacting massive particles, axions, and sterile neutrinos, despite the enormous effort that has gone into searching for these particles. Here, we discuss what we have learned about the nature of dark matter from past experiments, and the implications for planned dark matter searches in the next decade. We argue that diversifying the experimental effort, incorporating astronomical surveys and gravitational wave observations, is our best hope to make progress on the dark matter problem.Comment: Published in Nature, online on 04 Oct 2018. 13 pages, 1 figur
    corecore