13,183 research outputs found
Quantum correlations versus Multisimultaneity: an experimental test
Multisimultaneity is a causal model of relativistic quantum physics which
assigns a real time ordering to any set of events, much in the spirit of the
pilot-wave picture. Contrary to standard quantum mechanics, it predicts a
disappearance of the correlations in a Bell-type experiment when both analysers
are in relative motion such that, each one in its own inertial reference frame,
is first to select the output of the photons. We tested this prediction using
acousto-optic modulators as moving beam-splitters and interferometers separated
by 55 m. We didn't observe any disappearance of the correlations, thus refuting
Multisimultaneity.Comment: 4 pages, 3 figures, RevTex 4 versio
Strategy for the inversion of Hinode spectropolarimetric measurements in the quiet Sun
In this paper we propose an inversion strategy for the analysis of
spectropolarimetric measurements taken by {\em Hinode} in the quiet Sun. The
spectropolarimeter of the Solar Optical Telescope aboard {\em Hinode} records
the Stokes spectra of the \ion{Fe}{i} line pair at 630.2 nm with unprecendented
angular resolution, high spectral resolution, and high sensitivity. We discuss
the need to consider a {\em local} stray-light contamination to account for the
effects of telescope diffraction. The strategy is applied to observations of a
wide quiet Sun area at disk center. Using these data we examine the influence
of noise and initial guess models in the inversion results. Our analysis yields
the distributions of magnetic field strengths and stray-light factors. They
show that quiet Sun internetwork regions consist mainly of hG fields with
stray-light contaminations of about 0.8.Comment: To appear in Publications of the Astronomical Society of Japan, 8
pages, 10 figure
Morphological properties of slender Ca II H fibrils observed by SUNRISE II
We use seeing-free high spatial resolution Ca II H data obtained by the
SUNRISE observatory to determine properties of slender fibrils in the lower
solar chromosphere. In this work we use intensity images taken with the SUFI
instrument in the Ca II H line during the second scientific flight of the
SUNRISE observatory to identify and track elongated bright structures. After
the identification, we analyze theses structures in order to extract their
morphological properties. We identify 598 slender Ca II H fibrils (SCFs) with
an average width of around 180 km, a length between 500 km and 4000 km, an
average lifetime of ~400 s, and an average curvature of 0.002 arcsec^-1. The
maximum lifetime of the SCFs within our time series of 57 minutes is ~2000 s.
We discuss similarities and differences of the SCFs with other small-scale,
chromospheric structures such as spicules of type I and II, or Ca II K fibrils.Comment: Accepted for publication in The Astrophysical Journal Supplement
Serie
Kinematics of Magnetic Bright Features in the Solar Photosphere
Convective flows are known as the prime means of transporting magnetic fields
on the solar surface. Thus, small magnetic structures are good tracers of the
turbulent flows. We study the migration and dispersal of magnetic bright
features (MBFs) in intergranular areas observed at high spatial resolution with
Sunrise/IMaX. We describe the flux dispersal of individual MBFs as a diffusion
process whose parameters are computed for various areas in the quiet Sun and
the vicinity of active regions from seeing-free data. We find that magnetic
concentrations are best described as random walkers close to network areas
(diffusion index, gamma=1.0), travelers with constant speeds over a
supergranule (gamma=1.9-2.0), and decelerating movers in the vicinity of flux
emergence and/or within active regions (gamma=1.4-1.5). The three types of
regions host MBFs with mean diffusion coefficients of 130 km^2/s, 80-90 km^2/s,
and 25-70 km^2/s, respectively. The MBFs in these three types of regions are
found to display a distinct kinematic behavior at a confidence level in excess
of 95%.Comment: 8 pages, 4 figure
The P4G-Getting to Zero Coalition Partnership: Finding and supporting opportunities to decarbonise shipping in Indonesia, Mexico and South Africa
The International Maritime Organization has committed to reducing greenhouse gases emissions from international shipping by at least 50% by 2050 compared to 2008 levels. To reach that goal, a shift towards new low- and zero-carbon fuels -such as hydrogen and ammonia- is urgently needed, along with the deployment of safe and reliable zero-emission vessels, technologies and infrastructure. With shipping being a potential significant demand driver for these new fuels, it can act as a trigger and catalyst for the broader energy transition, benefiting other sectors of the economy. The P4G-Getting to Zero (GtZ) Coalition Partnership is a two-year project that focuses on shipping decarbonisation business and development opportunities in Indonesia, Mexico and South Africa. To the project’s core is the priority of bringing forward the national voices, priorities and policies around climate change, energy transition, job generation and air pollution. To that end, the P4G-GtZ team detected and engaged with key national and international stakeholders that can provide the current countries’ landscape, diagnostic and synergies around shipping opportunities. Apart from generating a networking space for the different key stakeholders, the project delivered detailed shipping activity maps coupled with energy studies that throw light at which low/zero-carbon fuel offers better feasibility to decarbonise shipping taking into account policy, job generation and international competition. The poster introduces the P4G-GtZ Coalition Partnership and the progress done so far while highlighting key findings around shipping decarbonisation, hydrogen-based fuels potential and energy transitions
Solar Coronal Loops Associated with Small-scale Mixed Polarity Surface Magnetic Fields
How and where are coronal loops rooted in the solar lower atmosphere? The
details of the magnetic environment and its evolution at the footpoints of
coronal loops are crucial to understanding the processes of mass and energy
supply to the solar corona. To address the above question, we use
high-resolution line-of-sight magnetic field data from the Imaging Magnetograph
eXperiment instrument on the SUNRISE balloon-borne observatory and coronal
observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics
Observatory of an emerging active region. We find that the coronal loops are
often rooted at the locations with minor small-scale but persistent
opposite-polarity magnetic elements very close to the larger dominant polarity.
These opposite-polarity small-scale elements continually interact with the
dominant polarity underlying the coronal loop through flux cancellation. At
these locations we detect small inverse Y-shaped jets in chromospheric Ca II H
images obtained from the SUNRISE Filter Imager during the flux cancellation.
Our results indicate that magnetic flux cancellation and reconnection at the
base of coronal loops due to mixed polarity fields might be a crucial feature
for the supply of mass and energy into the corona.Comment: Published in the Astrophysical Journal Supplement Serie
Determinação espectrofotométrica de dipirona em um sistema FIA empregando um microssistema analítico construído com LTCC.
Nos últimos anos um grande interesse no desenvolvimento de microssistema para análises totais (?-TAS) tem sido amplamente descrito na literatura, pois é possível integrar várias etapas analíticas em um mesmo dispositivo como: introdução e pré-tratamento da amostra, reações químicas, separação analítica e detecção. Recentemente, um novo material denominado cerâmica verde ou LTCC (Low temperature co-fired ceramics)1,2 está sendo utilizado como uma tecnologia alternativa para a fabricação de ?-TAS, devido a possibilidade de construir estruturas tridimensionais utilizando múltiplas camadas de cerâmica verde, canais com dimensão reduzida sem limitação geométrica, além de um baixo custo de fabricação. O objetivo deste trabalho foi à aplicação de um microssistema analítico construído com LTCC para a determinação espectrofotométrica de dipirona em formulações farmacêuticas empregando um sistema FIA
Nonequilibrium spectral diffusion due to laser heating in stimulated photon echo spectroscopy of low temperature glasses
A quantitative theory is developed, which accounts for heating artifacts in
three-pulse photon echo (3PE) experiments. The heat diffusion equation is
solved and the average value of the temperature in the focal volume of the
laser is determined as a function of the 3PE waiting time. This temperature is
used in the framework of nonequilibrium spectral diffusion theory to calculate
the effective homogeneous linewidth of an ensemble of probe molecules embedded
in an amorphous host. The theory fits recently observed plateaus and bumps
without introducing a gap in the distribution function of flip rates of the
two-level systems or any other major modification of the standard tunneling
model.Comment: 10 pages, Revtex, 6 eps-figures, accepted for publication in Phys.
Rev.
GronOR:Massively parallel and GPU-accelerated non-orthogonal configuration interaction for large molecular systems
GronOR is a program package for non-orthogonal configuration interaction calculations for an electronic wave function built in terms of anti-symmetrized products of multi-configuration molecular fragment wave functions. The two-electron integrals that have to be processed may be expressed in terms of atomic orbitals or in terms of an orbital basis determined from the molecular orbitals of the fragments. The code has been specifically designed for execution on distributed memory massively parallel and Graphics Processing Unit (GPU)-accelerated computer architectures, using an MPI+OpenACC/OpenMP programming approach. The task-based execution model used in the implementation allows for linear scaling with the number of nodes on the largest pre-exascale architectures available, provides hardware fault resiliency, and enables effective execution on systems with distinct central processing unit-only and GPU-accelerated partitions. The code interfaces with existing multi-configuration electronic structure codes that provide optimized molecular fragment orbitals, configuration interaction coefficients, and the required integrals. Algorithm and implementation details, parallel and accelerated performance benchmarks, and an analysis of the sensitivity of the accuracy of results and computational performance to thresholds used in the calculations are presented
- …