33 research outputs found

    Analisi e modifiche della booster pump 600DD56 Termomeccanica dell'impianto di Shoaiba Mina

    Get PDF
    Il presente lavoro di tesi è stato svolto durante un’attività di stage semestrale presso l’azienda TM.P Termomeccanica Pompe S.p.A. di La Spezia, e ha avuto come oggetto l’ottimizzazione di una pompa centrifuga e dell’impianto a essa collegato. L’attività è stata articolata in tre fasi principali, non necessariamente cronologicamente sequenziali: una fase di studio, per comprendere l’influenza delle principali grandezze sul funzionamento di una pompa e per ricercare e sviluppare nuove soluzioni; una fase di modellazione al computer, con software CAD, FEM e CFD, per sviluppare le soluzioni studiate e verificarne la funzionalità; una fase di prove pratiche, sostenute presso il centro prove aziendale, per rilevare le curve caratteristiche della macchina e misurarne tutte le prestazioni. Il progetto ha previsto innanzi tutto lo studio delle condizioni attuali della macchina, della girante, della borsa di aspirazione e delle tubazioni di ingresso alla pompa. Dopo aver rilevato le principali problematiche tramite modellazione CAD e analisi CFD, sono state studiate e verificate alcune modifiche da apportare alle principali componenti della macchina, nel rispetto delle specifiche richieste dal cliente

    Coherent transport in extremely underdoped Nd1.2Ba1.8Cu3Oz nanostructures

    Full text link
    Proximity-effect and resistance magneto-fluctuations measurements in submicron Nd1.2Ba1.8Cu3Oz (NBCO) nano-loops are reported to investigate coherent charge transport in the non-superconducting state. We find an unexpected inhibition of cooper pair transport, and a destruction of the induced superconductivity, by lowering the temperature from 6K to 250mK. This effect is accompanied by a significant change in the conductance-voltage characteristics and in the zero bias conductance response to the magnetic field pointing to the activation of a strong pair breaking mechanism at lower temperature. The data are discussed in the framework of mesoscopic effects specific to superconducting nanostructures, proximity effect and high temperature superconductivity.Comment: to appear on new journal of Physic

    On how to efficiently implement deep learning algorithms on PYNQ platform

    No full text
    Deep Learning algorithms are gaining momentum as main components in a large number of fields, from computer vision and robotics to finance and biotechnology. At the same time, the use of Field Programmable Gate Arrays (FPGAS) for data-intensive applications is increasingly widespread thanks to the possibility to customize hardware accelerators and achieve high-performance implementations with low energy consumption. Moreover, FPGAS have demonstrated to be a viable alternative to GPUS in embedded systems applications, where the benefits of the reconfigurability properties make the system more robust, capable to face the system failures and to respect the constraints of the embedded devices. In this work, we present a framework to efficiently implement Deep Learning algorithms by exploiting the PYNQ platform, recently released by Xilinx. The case study application is tested on PYNQ-Z1 board, commonly used in embedded system applications

    FIDA: A framework to automatically integrate FPGA kernels within data-science applications

    No full text
    Hardware accelerators are an effective solution to increase the performance of algorithms in a wide array of disciplines, from data science to computational finance. However, data scientists and mathematicians often do not have the required knowledge or time to fully exploit these accelerators, and they perceive them as difficult and frustrating to use. OpenCL was created to simplify the creation of computational pipelines with heterogeneous hardware, but as of today, its integration with high-level languages commonly used in data science is limited. In this paper, we propose a framework to integrate OpenCL kernels running on Field Programmable Gate Arrays (FPGAs) with Python, R, and MATLAB, the most common languages used in data science. Our framework can automatically generate all the interfaces needed to wrap an OpenCL kernel into these high-level languages and provide the user with a transparent access to the kernel itself
    corecore