
A Case Study for an Accelerated DCNN on
FPGA-based Embedded Distributed System

Anna Maria Nestorov Alberto Scolari Enrico Reggiani Luca Stornaiuolo Marco D. Santambrogio
Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano
Milan, Italy

{annamaria.nestorov, enrico2.reggiani}@mail.polimi.it,

{alberto.scolari, luca.stornaiuolo, marco.santambrogio}@polimi.it

Abstract—Face Detection (FD) recently became the base of
multiple applications requiring low latency but also with lim-
ited resources and energy budgets. Deep Convolutional Neural
Networks (DCNNs) are especially accurate in FD, but latency
requirements and energy budgets call for Field Programmable
Gate Arrays (FPGAs)-based solutions, trading flexibility and
efficiency. Nonetheless, the offer of FPGAs solutions is limited
and different chips often require expensive re-design phases,
while developers desire solutions whose resources can scale
proportionally to the demands. Therefore, this work presents
an FD solution based on a DCNN on a distributed, embedded
system with FPGAs, proposing a general approach to reduce the
DCNN size and to design its FPGA cores and investigating its
accuracy, performance, and energy efficiency.

Index Terms—DCNN, CNN, Quantization, Embedded, FPGA,
Distributed, Face detection, PYNQ-Z1, HDL, HLS

I. INTRODUCTION

FD consists in detecting the image regions that contain a

human face with a given likelihood, and may be performed in

embedded devices, close to the users, to avoid data transmis-

sion bottlenecks towards cloud infrastructures. While initial

solutions had two different steps of feature extraction and

classification, DCNN models unified them and also provide

robustness to geometrical transformations and noise.

Yet, DCNNs are computationally heavy, in contrast with

the latency requirements and power/energy constraints of

embedded solutions. While the research focused on specialized

accelerators Application Specific Integrated Circuits (ASICs)

[1] or on FPGAs designs [2], these solutions do not “scale”

to the application demands in that resources cannot be sized

proportionally to the design size.

This “scalability” is instead typical of distributed systems,

with resources added proportionally to the problem size.

To investigate these guidelines, we propose an embedded,

distributed system of FPGA-based processing elements tai-

lored to FD. To achieve these goals, we make the following

contributions:

1) porting a state-of-the-art FD DCNN [3] to such a system

2) prototyping this system via low-power embedded de-

vices such as Xilinx PYNQ-Z1

3) evaluating this prototype against a fully-optimized pure

software implementation and a server-class Graphic Pro-

cessing Unit (GPU) implementation

This paper is organized as follows. Section II summarizes

the relevant works in the literature. Section III shows the FD

approach of HyperFace, the DCNN classifier at the base of our

work, and our adaptations. Section IV explains the designs of

the proposed solution, whose implementation is discussed in

section V. Section VI evaluates the proposed approach, while

section VII discusses limitations and possible future work.

II. RELATED WORKS

Deformable Parts Models (DPMs) models, such as [4],

describe a face by its main components and consider their

potential deformations, with specialized filters for capturing

either the entire face or its components. Another solution for

FD adopts local Edge Orientation Histogramss (EOHs) [5]

as features, which are largely invariant to global illumination

changes and capture geometric properties of faces better than

linear edge filters. Instead, the Histogram of Oriented Gradient

(HOG) method [6] is based on evaluating well-normalized

local histograms of image gradient orientations in a dense grid.

To generalize over different illumination conditions or

poses, different Convolutional Neural Network (CNN) models

recently spread, which can automatically derive problem-

specific feature extractors from the training data: examples

are [7], [8] and [9], producing state-of-the-art results on many

challenging and publicly available FD datasets.

III. FACE DETECTION DCNN

This work starts from HyperFace [3], a state-of-the-art

DCNN solution for simultaneous FD, landmark localization,

pose estimation and gender classification that exploits the

feature information hierarchically spread through the network

[10]. HyperFace starts by identifying candidate regions that

likely contain faces via the Selective Search (SS) algorithm

[11] and resizes them to fit the model input size, evaluating

them via the HyperFace DCNN. As in the original imple-

mentation [3], we trained our model instance from the AFLW

dataset [12] via TensorFlow, using 32-bit floating-point values,

with 21,997 real-world images. The validation classification

accuracy over the ground truth obtained after two epochs of

training is 97.04%, which is sufficient for our purposes.

By removing the layers for landmark localization, pose

estimation and gender classification we tailored the modular

91

2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)

DOI 10.1109/IPDPSW.2019.00025



Fig. 1. Our FD architecture and the five final stages after implementation.

Input Data 
Stream

Weights
Stream

BiasAdd_Relu
and 

Requantization Output Data 
Stream

Max Pooling

Accellerator

DataSaver
Input

Quantization
Machine

Weights
Quantization

Machine
Convolutional 

Core

Fig. 2. A convolutional layer followed by a max-pooling layer architecture.

HyperFace architecture to a FD-only task, whose structure

is shown in Fig.1: our FD model is composed by five

convolutional layers, some followed by subsampling layers,

and three fully-connected layers. Response normalization steps

have been removed since they are assumed to have a minimal

impact when limiting the number of tasks [13], while the

removed tasks can be considered as extensions to this work.

IV. SYSTEM DESIGN

This section explains the design strategies to build our

systems, starting from the quantization strategy to the design

of the various cores.

a) Quantization Process: We quantized the FD model

in TensorFlow by empirically observing the ranges of in-

puts, outputs, weights, biases, and intermediate Multiply and

Accumulate (MAC) values through the various layers while

running on a representative subset of input images, selecting

8-bit precision for our model. We implemented the quantized

matrix multiplication within the convolutional cores based on

the open source gemmlowp library [14], which internally uses

more thnan 8 bits to accumulate and avoid overflows.

b) Node System Architecture: The node architecture

should be flexible, to run one or more stages in a single

bitstream. The Central Processing Unit (CPU) controls the

computation by sending input data and weights to the acceler-

ator via separate Direct Memory Access (DMA) cores, caches

the biases in the on-chip Block Random-Access Memory

(BRAM), reads the results back and sends them to the next

node in the cluster. Fig.2 shows the architecture to compute

a convolutional layer followed by a max-pooling layer, with

input quantization, bias adding, Rectified Linear Unit (ReLU)

application and to outputs requantization to 8 bits; these com-

ponents communicate via First-In, First-Out (FIFO) queues,

with a purely dataflow design.

The Convolutional Core performs the input convolution with

the weights via MACs units. For any DCNN, two sources of

parallelism exist: intra-layer is derived from the independence

of output feature maps, as different filters can be applied

simultaneously to the same input, while intra-feature-maps
is based on the fact that multiple input features maps can

be multiplied by the weight in parallel and then accumulated

via an accumulation tree to compute the output feature map.

In our design, Digital Signal Processors (DSPs) are properly

time-multiplexed among independent operations on the same

input feature map or among different output feature maps,

computing each convolution with one DSP, which acts as

a MAC unit by performing an element-wise multiplication

between the input feature map and the corresponding weight-

set, internally accumulating the partial results. The input data-

path works at a sub-multiple of the clock frequency using a

clock-enable signal, whose value is strictly dependent on the

filter size and is multiplexed so that every element is consumed

by the same MAC, thus mapping different convolutional layers

with the same filter size on the same hardware.

To leverage data reuse and increase performance, the

DataSaver reads the inputs from main memory through a

DMA just once, re-orders the data based on current intra-layer
parallelism and stores them in BRAM, acting as a pre-fetching

and caching core for the following computational core.

The Input and Weights Quantization Machines take data

coming from the DataSaver, or weights from main memory

and normalize them by subtracting their zero values.

If the intra-feature-maps parallelism does not match with

the number of input feature maps, partial results are accumu-

lated in the BiasAdd Relu and Requantization Core to obtain

the final results, which also adds biases by first subtracting

the bias zero point to the output of the convolution and then

rescaling the result to the target range to finally add the bias;

finally, it applies the ReLU operator and performs a second

requantization to scale this value to the 8-bit output.

The Max-Pooling Core is a simplified version of the Convo-
lutional Core, with the same data access pattern but applying

the simpler MAX operator, with little DSPs usage. Adopting

the same parallelism as the Convolutional Core, thus analyzing

the same number of output feature maps produced in parallel,

allows sustaining the same throughput, as the dataflow style

prescribes.

V. IMPLEMENTATION

As a reference, we use a fully-optimized software imple-

mentation of the whole FD network based on state-of-the-

art, floating-point Basic Linear Algebra Subprograms (BLAS)

routines [15] optimzed for ARM CPUs from OpenBLAS [16],

which are natively multi-threaded.

For the FPGA implementation, we split the FD model layers

into stages, based on the most constraining resource required,

in all cases DSPs. Table I shows the characteristics of the

three stages designed to run on a single PYNQ-Z1 node, while

Table II shows those of the six stages that run on the cluster

of PYNQ-Z1 nodes, highlighted with colored boxes in Fig. 1,

with Iterations being the number of calls to the stage logic to

compute a single candidate region.

To run all stages in Table I on a single node, the application

runs one bitstream at a time and re-configures the FPGA,

92



TABLE I
SINGLE PYNQ-Z1 SYSTEM STAGES

Stage FMs Parallelisms Iterations Conv. Core
Input Output Intra-Feature-Maps Intra-Layer Frequency [MHz]

Stage1 3 96 3 48 2 140
Stage2 96 256 96 3 86 120
Stage3 4 5 256, 384, 384 384, 384, 256 128 1 2688 100

TABLE II
DISTRIBUTED SYSTEM STAGES

Stage FMs Parallelisms Iterations Conv. Core
Input Output Intra-Feature-Maps Intra-Layer Frequency [MHz]

Stage1 3 96 3 48 2 140
Stage2 1 96 126 96 3 42 120
Stage2 2 96 130 96 3 44 120
Stage3 256 384 128 2 384 150
Stage4 384 384 128 2 576 150
Stage5 384 256 128 2 384 150

which takes two orders of magnitude more than a stage;

multiple inputs are batched to run against each stage before re-

configuration, which is possible as an image contains hundreds

of candidate regions, and the PYNQ-Z1 memory allowed

storing all of them in memory during our tests. To further

decrease reconfiguration costs in this scenario (despite this

choice reduces the available intra-layer parallelism), Stage3,

Stage4, and Stage5 are mapped to the same bitstream as shown

in Table I.

Instead, the distributed system, composed by six PYNQ-

Z1 nodes running the stages in Table II, achieves higher

performance at the cost of a proportionally high resources

usage, where nodes communicate via 100Mb/s Ethernet chan-

nels connected in a star topology to achieve a fully-pipelined

execution, mimicking the structure of Fig. 1. To balance this

pipeline, the second stage has been split into two substages

(Stage2 1 and Stage2 2) since its latency is twice the other

stages latencies. The communication between the nodes is

implemented with Message Passing Interface (MPI) [17],

using synchronous and non-blocking primitives with double

buffering in order to parallelize input receiving, FPGA com-

putation, and output transmission.

In all our PYNQ-Z1 implementations, the software part

is written in C/C++ to minimize overheads and runs on the

ARM Ubuntu Linux distribution natively installed on PYNQ-

Z1, while the computational cores on FPGA are written in

SystemVerilog and the cores for data movements and quanti-

zation are written in High Level Synthesis (HLS) to be easily

modifiable for varying requirements of access patterns and

quantization strategies.

VI. EXPERIMENTAL RESULTS

Our goal is to achieve similar accuracies in FD scores

with respect to the TensorFlow results with floating-point and

a speedup in terms of latency with respect to the software

implementation. In the following, we will refer to the software-

only solution as ARM and to the FPGA-based implementation

as ARM-FPGA; both can run in a single node or distributed set-

tings, as from section V. Additionally, the original implemen-

tation in TensorFlow is run with the same input on an NVIDIA

GPU
ARM-FPGA Distributed System
ARM Distributed System

A
ve

ra
g

e 
E

xe
cu

ti
o

n
 T

im
e 

[m
s]

 (
lo

g
 s

ca
le

)

0.05

0.10

0.30

3.00
5.00
7.00

12.00

200.00
300.00
400.00

Stages

Stage1 Stage2_1 Stage2_2 Stage3 Stage4 Stage5

Fig. 3. Trend of the per-stage average execution times.

GeForce GTX 960 GPU with an Intel Core i7-6700 CPU at

3.40GHz, and is referred to as GPU, representing a server-

class equipment with a high power budget that is unavailable

in embedded scenarios (120W); here, the experiments are run

with a batch size of 137, limited by the memory on the GPU

card, in order to fully exploit its parallelism.

All the experiments use 100 input images for both ARM and

ARM-FPGA implementations, with an average of 650 candi-

date regions per image generated through the SS algorithm.

In the following sections, several aspects are evaluated, and

the time results are referred to the pure convolutional part

since it is the portion of the DCNN that it has been ported on

hardware, being it the most computationally intensive part of

a DCNN model.

A. Accuracy Loss with Quantization

With respect to the reference TensorFlow implementation,

the probabilities computed by both ARM and ARM-FPGA
implementations show negligible relative errors, 10−6 and

10−3 respectively. This translates to 100% and 99% respec-

tively of predictions being equal to TensorFlow’s, although our

implementations use 8-bit integers instead of 32-bit floating

point.

B. Per-Stage Execution Times

Fig. 3 shows the per-stage average execution times for the

best representatives of each solution, with the ARM imple-

mentation being two orders of magnitude slower than ARM-
FPGA, while the ratio between the ARM-FPGA and the GPU
is around one order of magnitude, despite the different classes

and power/energy characteristics of these systems.

On average, our ARM-FPGA implementation achieves a

37× per layer speedup compared to ARM, while it remains

on average three times slower than GPU.

C. Hardware Resource Usage

Table III shows that the most critical FPGA resource are

DSPs, mainly used within the Convolutional Core to perform

the computation. While most components run at 100MHz

frequency, the Convolutional Core has a higher frequency

because of the time-multiplexing optimization: using DSPs as

93



TABLE III
HARDWARE RESOURCE USAGE

Nodes
LUTs FFs DSPs BRAMs

(53200) (106400) (220) (240)
Usage Percentage Usage Percentage Usage Percentage Usage Percentage

Stage1 37,029 69.60% 55,938 52.57% 196 89.09% 74.50 53.21%

Stage2 37,433 70.36% 64,991 61.08% 219 99.55% 122 87.14%

Stage2 1 36,246 68.13% 64,966 61.06% 219 99.55% 121 86.43%

Stage2 2 37,453 70.40% 64,957 61.05% 219 99.55% 136 97.14%

Stage3 35,466 66.67% 60,477 56.84% 200 100% 119 85%

Stage4 33,071 62.16% 62,746 58.97% 219 99.55% 133 95%

Stage5 34,053 64.01% 61,240 57.56% 219 99.55% 119.50 85.36%

Stage3 4 5 36,845 69.26% 63,583 69.26% 135 61.36% 121.50 86.79%

MAC units makes this core the design bottleneck since data

flow every clock enable cycles.

Note that Stage3 4 5 also runs at 100MHz frequency

because of timing issues due to the congested design, as from

Table I and Table II. The Max-Pooling Core does not need

to be clocked at higher frequencies if its filter size is smaller

than the convolutional one; its frequency can indeed be tuned

to match the convolutional core maximum throughput.

D. End-to-End Time

As the ARM implementation is sequential, the end-to-end

time to analyze an entire image (assuming 650 candidate

regions) is more than 18m, which is the sum of all stages ex-

ecution times in Fig. 3 multiplied by the number of candidate

regions. Instead, the single node ARM-FPGA implementation

takes 1m18s to perform the same computation, which accounts

for the computation, the reconfiguration, and related over-

heads; here, reconfiguration occurs after all candidate regions

are computed in a stage and intermediate results are buffered

in memory, with a 14.7× speedup over the single node ARM.

The distributed ARM-FPGA system analyzes a candidate

region every 9.36ms, while the ARM every 369.22ms; since the

total time to analyze an image is 6.08 seconds and 4 minutes,

respectively, we achieve a 39.5× speedup over distributed

ARM, while we are slower than GPU by a factor of 12.2×.

E. Power Consumption and Energy Efficiency

Table IV shows power and energy results from the analysis

of a single image. The ARM implementations of both the

single node and the distributed system have higher execution

times and power consumption than the corresponding ARM-
FPGA implementation, which has 16.2× higher energy effi-

ciency. Similarly, in the distributed setting the ARM-FPGA
implementation achieves 44× higher efficiency than ARM.

The GPU implementation is 1.3× less energy efficient than

the distributed ARM-FPGA system and it is characterized by

a very high peak power. However, due to limitations of the

PYNQ-Z1 platform, the results in Table IV include all the

board components, while for the GPU setting they include

GPU and CPU only.

VII. CONCLUSIONS AND FUTURE WORK

This work introduced design guidelines to accelerate a FD

CNN to a distributed, embedded system and implemented it on

the PYNQ-Z1 platform, with a final speedup of 39.5× in terms

TABLE IV
POWER AND ENERGY RESULTS

GPU ARM ARM-FPGA

Single Distributed Single Distributed

Run Time [s] 1.104 1,403 304.606 98.159 7.722
Power Max [W] 205 4.2 24.8 3.7 22.2

Energy Per Image [J] 226 5,891 7,554 363 171

of analysis time and 44× higher energy efficiency with respect

to a distributed, fully optimized software implementation and

negligible accuracy loss despite quantization greatly helped

increasing compute density on FPGA. As future steps, we

are considering automated scheduling approches to cope with

node failures and changing workloads.

REFERENCES

[1] A. Erdem, C. Silvano, T. Boesch, A. Ornstein, S.-P. Singh, and
G. Desoli, “Design space exploration for orlando ultra low-power
convolutional neural network soc,” Jul. 2018, pp. 1–7.

[2] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, S. Song, Y. Wang, and H. Yang, “Going deeper with embedded
fpga platform for convolutional neural network,” in Proceedings of the
2016 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, ser. FPGA ’16, Monterey, California, USA: ACM, 2016,
pp. 26–35.

[3] R. Ranjan, V. M. Patel, and R. Chellappa, “Hyperface: A deep multi-
task learning framework for face detection, landmark localization, pose
estimation, and gender recognition,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 1–1, 2018.

[4] M. Mathias, R. Benenson, M. Pedersoli, and L. Van Gool, “Face
detection without bells and whistles,” in European Conference on
Computer Vision (ECCV), Sep. 2014.

[5] K. Levi and Y. Weiss, “Learning object detection from a small number
of examples: The importance of good features,” in Proceedings of the
2004 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2004. CVPR 2004., vol. 2, Jun. 2004, pp. II–II.

[6] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), vol. 1, Jun. 2005, 886–893
vol. 1.

[7] R. Ranjan, V. M. Patel, and R. Chellappa, “A deep pyramid deformable
part model for face detection,” CoRR, vol. abs/1508.04389, 2015.
arXiv: 1508.04389.

[8] S. Yang, P. Luo, C. C. Loy, and X. Tang, From facial parts responses
to face detection: A deep learning approach, Dec. 2015.

[9] S. S. Farfade, M. J. Saberian, and L. Li, “Multi-view face detection us-
ing deep convolutional neural networks,” CoRR, vol. abs/1502.02766,
2015. arXiv: 1502.02766.

[10] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” CoRR, vol. abs/1311.2901, 2013. arXiv: 1311.2901.

[11] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
CoRR, vol. abs/1311.2524, 2013. arXiv: 1311.2524.

[12] M. Köstinger, P. Wohlhart, P. M. Roth, and H. Bischof, “Annotated
facial landmarks in the wild: A large-scale, real-world database for
facial landmark localization,” in 2011 IEEE International Confer-
ence on Computer Vision Workshops (ICCV Workshops), Nov. 2011,
pp. 2144–2151.

[13] (2018). Convolutional neural networks (CNNs / ConvNets), [Online].
Available: http://cs231n.github.io/convolutional-networks/.

[14] (2018). gemmlowp - Low-precision matrix multiplication, [Online].
Available: https://opensource.google.com/projects/gemmlowp.

[15] (2018). BLAS (Basic Linear Algebra Subprograms), [Online]. Avail-
able: http://www.netlib.org/blas/.

[16] W. S. Zhang Xianyi Wang Qian. (2018). Openblas - an optimized blas
library, [Online]. Available: https://www.openblas.net.

[17] L. L. N. L. Blaise Barney. (2018). Message passing interface (mpi),
[Online]. Available: https://computing.llnl.gov/tutorials/mpi/.

94


