79 research outputs found

    The influence of the frequency of periodic disturbances on the maintenance of phytoplankton diversity

    Get PDF
    The influence of periodic disturbances of various frequency on the maintenance of the phytoplankton diversity was studied by semicontinuous competition experiments. Disturbances consisted of dilution events, which meant both addition of fresh nutrients and elimination of organisms. The intervals between dilution events varied from 1 to 14 days. Diversity was found to increase with increasing intervals between disturbances. coexisting species belonged to different strategy types: (a) species with rapid growth under enriched conditions, (b) species with good competitive abilities under impoverished conditions, (c) species with the ability to build up storage pools of the limiting nutrient. An increase of the number of coexisting species over the number that would have coexisted in steady state was only found when the interval exceeded one generation time

    Phytoplankton competition along a gradient of dilution rates

    Get PDF
    Natural phytoplankton from Lake Constance was used for chemostat competition experiments performed at a variety of dilution rates. In the first series at high Si:P ratios and under uniform phosphorus limitation for all species, Synedra acus outcompeted all other species at all dilution rates up to 1.6 d-1, only at the highest dilution rate (2.0 d-1) Achnanthes minutissima was successful. In the second series in the absence of any Si a green algal replacement series was found, with Mougeotia thylespora dominant at the lowest dilution rates, Scenedesmus acutus at the intermediate ones, and Chlorella minutissima at the highest ones. The outcome of interspecific competition was not in contradiction with the Monod kinetics of P-limited growth of the five species, but no satisfactorily precise prediction of competitive performance can be derived from the Monod kinetics because of insufficient precision in the estimate of k s

    Some size relationships in phytoflagellate motility

    Get PDF
    Data from the literature are used to assess some hypothesised adaptive advantages of the flagellate life form among phytoplankton. Possible advantages include increased nutrient uptake by movement through a homogeneous medium as opposed to exploitation of spatial hetrogeneity of the environment. Maximal migrational amplitudes and maximal swimming velocities of phytoflagellates were compared to body size. Both were found to increase with size. Relative amplitudes and relative velocities, however, were found to decrease with size. Hydrophysical considerations show that additional gain of nutrients by swimming through a homogeneous medium is only minimal for small flagellates at their attainable swimming velocities. It is suggested that exploitation of environmental heterogeneity in nutrient distribution may be one of the most important advantages for flagellates over coccoid algae

    Increased risk of phosphorus limitation at higher temperatures for Daphnia magna

    Get PDF
    Invertebrate herbivores frequently face growth rate constraints due to their high demands for phosphorus (P) and nitrogen (N). Temperature is a key modulator of growth rate, yet the interaction between temperature and P limitation on somatic growth rate is scarcely known. To investigate this interaction, we conducted a study on the somatic growth rate (SGR) of the cladoceran Daphnia magna, known to be susceptible to P-limitation. We determined the SGR across a broad range of dietary P content of algae (carbon (C):P ratios (125–790), and at different temperatures (10–25°C). There was a strong impact of both temperature and C:P ratio on the SGR of D. magna, and also a significant interaction between both factors was revealed. The negative effect of dietary C:P on growth rate was reduced with decreased temperature. We found no evidence of P limitation at lowest temperature, suggesting that enzyme kinetics or other measures of food quality overrides the demands for P to RNA and protein synthesis at low temperatures. These findings also indicate an increased risk of P limitation and thus reduced growth efficiency at high temperatures

    Loss of Sexual Reproduction and Dwarfing in a Small Metazoan

    Get PDF
    Asexuality has major theoretical advantages over sexual reproduction, yet newly formed asexual lineages rarely endure. The success, or failure, of such lineages is affected by their mechanism of origin, because it determines their initial genetic makeup and variability. Most previously described mechanisms imply that asexual lineages are randomly frozen subsamples of a sexual population.We found that transitions to obligate parthenogenesis (OP) in the rotifer Brachionus calyciflorus, a small freshwater invertebrate which normally reproduces by cyclical parthenogenesis, were controlled by a simple Mendelian inheritance. Pedigree analysis suggested that obligate parthenogens were homozygous for a recessive allele, which caused inability to respond to the chemical signals that normally induce sexual reproduction in this species. Alternative mechanisms, such as ploidy changes, could be ruled out on the basis of flow cytometric measurements and genetic marker analysis. Interestingly, obligate parthenogens were also dwarfs (approximately 50% smaller than cyclical parthenogens), indicating pleiotropy or linkage with genes that strongly affect body size. We found no adverse effects of OP on survival or fecundity.This mechanism of inheritance implies that genes causing OP may evolve within sexual populations and remain undetected in the heterozygous state long before they get frequent enough to actually cause a transition to asexual reproduction. In this process, genetic variation at other loci might become linked to OP genes, leading to non-random associations between asexuality and other phenotypic traits

    Responses of phytoplankton to experimental fertilization with ammonium and phosphate in an African soda lake

    Full text link
    Phytoplankton abundance in tropical lakes is more often judged to be limited by nitrogen than phosphorus, but seldom does the evidence include controlled enrichments of natural populations. In January 1980 we performed the first experimental fertilization in an equatorial African soda lake, Lake Sonachi, a small, meromictic volcanic crater lake in Kenya. During our study the natural phytoplankton abundance was ca. 80 μg chl a /l, and the euphotic zone PO 4 and NH 4 concentrations were less than 0.5 μM. In the monimolimnion PO 4 reached 180 μM and NH 4 reached 4,600 μM. Replicate polyethylene cylinders (5 m long, 1.2 m 3 ) were enriched to attain 10 μM PO 4 and 100 μM NH 4 . Phytoplankton responses were measured as chlorophyll, cell counts and particulate N, P and C. After two days, the chlorophyll increase in the P treatment was significantly higher than the control ( P <0.01) while the N treatment was not. After five days the molar N/P ratio of seston was the same in the N treatment and control (23) but only 6 in the P treatment. The molar N/P ratio of seston in an unenriched Lake Sonachi sample was 21 and in samples from Lakes Bogoria and Elmenteita, two shallow soda lakes in Kenya, the ratios were 12 and 70 respectively. We conclude that limitation of phytoplankton abundance by phosphorus can occur even in some tropical African soda lakes.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47742/1/442_2004_Article_BF00367954.pd

    Food Quality Affects Secondary Consumers Even at Low Quantities: An Experimental Test with Larval European Lobster

    Get PDF
    The issues of food quality and food quantity are crucial for trophic interactions. Although most research has focussed on the primary producer – herbivore link, recent studies have shown that quality effects at the bottom of the food web propagate to higher trophic levels. Negative effects of poor food quality have almost exclusively been demonstrated at higher food quantities. Whether these negative effects have the same impact at low food availability in situations where the majority if not all of the resources are channelled into routine metabolism, is under debate. In this study a tri-trophic food chain was designed, consisting of the algae Rhodomonas salina, the copepod Acartia tonsa and freshly hatched larvae of the European lobster Homarus gammarus. The lobster larvae were presented with food of two different qualities (C∶P ratios) and four different quantities to investigate the combined effects of food quality and quantity. Our results show that the quality of food has an impact on the condition of lobster larvae even at very low food quantities. Food with a lower C∶P content resulted in higher condition of the lobster larvae regardless of the quantity of food. These interacting effects of food quality and food quantity can have far reaching consequences for ecosystem productivity

    Joint effect of phosphorus limitation and temperature on alkaline phosphatase activity and somatic growth in Daphnia magna

    Get PDF
    Alkaline phosphatase (AP) is a potential biomarker for phosphorus (P) limitation in zooplankton. However, knowledge about regulation of AP in this group is limited. In a laboratory acclimation experiment, we investigated changes in body AP concentration for Daphnia magna kept for 6 days at 10, 15, 20 and 25°C and fed algae with 10 different molar C:P ratios (95–660). In the same experiment, we also assessed somatic growth of the animals since phosphorus acquisition is linked to growth processes. Overall, non-linear but significant relationships of AP activity with C:P ratio were observed, but there was a stronger impact of temperature on AP activity than of P limitation. Animals from the lowest temperature treatment had higher normalized AP activity, which suggests the operation of biochemical temperature compensation mechanisms. Body AP activity increased by a factor of 1.67 for every 10°C decrease in temperature. These results demonstrate that temperature strongly influences AP expression. Therefore, using AP as a P limitation marker in zooplankton needs to consider possible confounding effects of temperature. Both temperature and diet affected somatic growth. The temperature effect on somatic growth, expressed as the Q10 value, responded non-linearly with C:P, with Q10 ranging between 1.9 for lowest food C:P ratio and 1.4 for the most P-deficient food. The significant interaction between those two variables highlights the importance of studying temperature-dependent changes of growth responses to food quality

    The importance of sedimenting organic matter, relative to oxygen and temperature, in structuring lake profundal macroinvertebrate assemblages

    Get PDF
    We quantified the role of a main food resource, sedimenting organic matter (SOM), relative to oxygen (DO) and temperature (TEMP) in structuring profundal macroinvertebrate assemblages in boreal lakes. SOM from 26 basins of 11 Finnish lakes was analysed for quantity (sedimentation rates), quality (C:N:P stoichiometry) and origin (carbon stable isotopes, d13C). Hypolimnetic oxygen and temperature were measured from each site during summer stratification. Partial canonical correspondence analysis (CCA) and partial regression analyses were used to quantify contributions of SOM, DO and TEMP to community composition and three macroinvertebrate metrics. The results suggested a major contribution of SOM in regulating the community composition and total biomass. Oxygen best explained the Shannon diversity, whereas TEMP had largest contribution to the variation of Benthic Quality Index. Community composition was most strongly related to d13C of SOM. Based on additional d13C and stoichiometric analyses of chironomid taxa, marked differences were apparent in their utilization of SOM and body stoichiometry; taxa characteristic of oligotrophic conditions exhibited higher C:N ratios and lower C:P and N:P ratios compared to the species typical of eutrophic lakes. The results highlight the role of SOM in regulating benthic communities and the distributions of individual species, particularly in oligotrophic systems
    corecore