16,460 research outputs found

    DTN routing optimised by human routines: the HURRy protocol

    Get PDF
    This paper proposes the HURRy (HUman Routines used for Routing) protocol, which infers and benefits from the social behaviour of nodes in disruptive networking environments. HURRy incorporates the contact duration to the information retrieved from historical encounters among neighbours, so that smarter routing decisions can be made. The specification of HURRy is based on the outcomes of a thorough experiment, which highlighted the importance of distinguishing between short and long contacts and deriving mathematical relations in order to optimally prioritize the available routes to a destination. HURRy introduces a novel and more meaningful rating system to evaluate the quality of each contact and overcome the limitations of other routing approaches in social environments.European Commission, Horizon 2020, Grant Agreement number 645124, UMOBIL

    Microscopics of Extremal Kerr from Spinning M5 Branes

    Get PDF
    We show that the spinning magnetic one-brane in minimal five-dimensional supergravity admits a decoupling limit that interpolates smoothly between a self-dual null orbifold of AdS_3 \times S^2 and the near-horizon limit of the extremal Kerr black hole times a circle. We use this interpolating solution to understand the field theory dual to spinning M5 branes as a deformation of the Discrete Light Cone Quantized (DLCQ) Maldacena-Stominger-Witten (MSW) CFT. In particular, the conformal weights of the operators dual to the deformation around AdS_3 \times S^2 are calculated. We present pieces of evidence showing that a CFT dual to the four-dimensional extremal Kerr can be obtained from the deformed MSW CFT.Comment: 5 page

    On All-loop Integrands of Scattering Amplitudes in Planar N=4 SYM

    Get PDF
    We study the relationship between the momentum twistor MHV vertex expansion of planar amplitudes in N=4 super-Yang-Mills and the all-loop generalization of the BCFW recursion relations. We demonstrate explicitly in several examples that the MHV vertex expressions for tree-level amplitudes and loop integrands satisfy the recursion relations. Furthermore, we introduce a rewriting of the MHV expansion in terms of sums over non-crossing partitions and show that this cyclically invariant formula satisfies the recursion relations for all numbers of legs and all loop orders.Comment: 34 pages, 17 figures; v2: Minor improvements to exposition and discussion, updated references, typos fixe

    Successive spin-flop transitions of a Neel-type antiferromagnet Li2MnO3 single crystal with a honeycomb lattice

    Get PDF
    We have carried out high magnetic field studies of single-crystalline Li2MnO3, a honeycomb lattice antiferromagnet. Its magnetic phase diagram was mapped out using magnetization measurements at applied fields up to 35 T. Our results show that it undergoes two successive meta-magnetic transitions around 9 T fields applied perpendicular to the ab plane (along the c* axis). These phase transitions are completely absent in the magnetization measured with the field applied along the ab plane. In order to understand this magnetic phase diagram, we developed a mean-field model starting from the correct Neel-type magnetic structure, consistent with our single crystal neutron diffraction data at zero field. Our model calculations succeeded in explaining the two meta-magnetic transitions that arise when Li2MnO3 enters two different spin-flop phases from the zero field Neel phase.open1187Nsciescopu

    Consistency Conditions on S-Matrix of Spin 1 Massless Particles

    Full text link
    Motivated by new techniques in the computation of scattering amplitudes of massless particles in four dimensions, like BCFW recursion relations, the question of how much structure of the S-matrix can be determined from purely S-matrix arguments has received new attention. The BCFW recursion relations for massless particles of spin 1 and 2 imply that the whole tree-level S-matrix can be determined in terms of three-particle amplitudes (evaluated at complex momenta). However, the known proofs of the validity of the relations rely on the Lagrangian of the theory, either by using Feynman diagrams explicitly or by studying the effective theory at large complex momenta. This means that a purely S-matrix theoretic proof of the relations is still missing. The aim of this paper is to provide such a proof for spin 1 particles by extending the four-particle test introduced by P. Benincasa and F. Cachazo in arXiv:0705.4305[hep-th] to all particles. We show how n-particle tests imply that the rational function built from the BCFW recursion relations possesses all the correct factorization channels including holomorphic and anti-holomorphic collinear limits. This in turn implies that they give the correct S-matrix of the theory.Comment: 24 pages, 4 figure

    3′-UTR engineering to improve soluble expression and fine-tuning of activity of cascade enzymes in Escherichia coli

    Get PDF
    3'-Untranslated region (3'UTR) engineering was investigated to improve solubility of heterologous proteins (e.g., Baeyer-Villiger monooxygenases (BVMOs)) in Escherichia coli. Insertion of gene fragments containing putative RNase E recognition sites into the 3'UTR of the BVMO genes led to the reduction of mRNA levels in E. coli. Importantly, the amounts of soluble BVMOs were remarkably enhanced resulting in a proportional increase of in vivo catalytic activities. Notably, this increase in biocatalytic activity correlated to the number of putative RNase E endonucleolytic cleavage sites in the 3'UTR. For instance, the biotransformation activity of the BVMO BmoF1 (from Pseudomonas fluorescens DSM50106) in E. coli was linear to the number of RNase E cleavage sites in the 3'UTR. In summary, 3'UTR engineering can be used to improve the soluble expression of heterologous enzymes, thereby fine-tuning the enzyme activity in microbial cells.1184Ysciescopu

    The Spectrum of Strings on Warped AdS_3 x S^3

    Full text link
    String theory on NS-NS AdS_3 x S^3 admits an exactly marginal deformation which breaks the SL(2,R)_R x SL(2,R)_L isometry of AdS_3 down to SL(2,R)_R x U(1)_L. The holographic dual is an exotic and only partially understood type of two-dimensional CFT with a reduced unbroken global conformal symmetry group. In this paper we study the deformed theory on the string worldsheet. It is found to be related by a spectral flow which is nonlocal in spacetime to the undeformed worldsheet theory. An exact formula for the spectrum of massive strings is presented.Comment: 26 pages, no figure

    Dual conformal constraints and infrared equations from global residue theorems in N=4 SYM theory

    Get PDF
    Infrared equations and dual conformal constraints arise as consistency conditions on loop amplitudes in N=4 super Yang-Mills theory. These conditions are linear relations between leading singularities, which can be computed in the Grassmannian formulation of N=4 super Yang-Mills theory proposed recently. Examples for infrared equations have been shown to be implied by global residue theorems in the Grassmannian picture. Both dual conformal constraints and infrared equations are mapped explicitly to global residue theorems for one-loop next-to-maximally-helicity-violating amplitudes. In addition, the identity relating the BCFW and its parity-conjugated form of tree-level amplitudes, is shown to emerge from a particular combination of global residue theorems.Comment: 21 page

    Evidence for Two Modes of Synergistic Induction of Apoptosis by Mapatumumab and Oxaliplatin in Combination with Hyperthermia in Human Colon Cancer Cells

    Get PDF
    Colorectal cancer is the third leading cause of cancer-related mortality in the world-- the main cause of death from colorectal cancer is hepatic metastases, which can be treated with isolated hepatic perfusion (IHP). Searching for the most clinically relevant approaches for treating colorectal metastatic disease by isolated hepatic perfusion (IHP), we developed the application of oxaliplatin concomitantly with hyperthermia and humanized death receptor 4 (DR4) antibody mapatumumab (Mapa), and investigated the molecular mechanisms of this multimodality treatment in human colon cancer cell lines CX-1 and HCT116 as well as human colon cancer stem cells Tu-12, Tu-21 and Tu-22. We showed here, in this study, that the synergistic effect of the multimodality treatment-induced apoptosis was caspase dependent and activated death signaling via both the extrinsic apoptotic pathway and the intrinsic pathway. Death signaling was activated by c-Jun N-terminal kinase (JNK) signaling which led to Bcl-xL phosphorylation at serine 62, decreasing the anti-apoptotic activity of Bcl-xL, which contributed to the intrinsic pathway. The downregulation of cellular FLICE inhibitory protein long isoform (c-FLIPL) in the extrinsic pathway was accomplished through ubiquitination at lysine residue (K) 195 and protein synthesis inhibition. Overexpression of c-FLIPL mutant (K195R) and Bcl-xL mutant (S62A) completely abrogated the synergistic effect. The successful outcome of this study supports the application of multimodality strategy to patients with colorectal hepatic metastases who fail to respond to standard chemoradiotherapy that predominantly targets the mitochondrial apoptotic pathway. © 2013 Song et al

    Mesoscopic structure and social aspects of human mobility

    Get PDF
    The individual movements of large numbers of people are important in many contexts, from urban planning to disease spreading. Datasets that capture human mobility are now available and many interesting features have been discovered, including the ultra-slow spatial growth of individual mobility. However, the detailed substructures and spatiotemporal flows of mobility - the sets and sequences of visited locations - have not been well studied. We show that individual mobility is dominated by small groups of frequently visited, dynamically close locations, forming primary "habitats" capturing typical daily activity, along with subsidiary habitats representing additional travel. These habitats do not correspond to typical contexts such as home or work. The temporal evolution of mobility within habitats, which constitutes most motion, is universal across habitats and exhibits scaling patterns both distinct from all previous observations and unpredicted by current models. The delay to enter subsidiary habitats is a primary factor in the spatiotemporal growth of human travel. Interestingly, habitats correlate with non-mobility dynamics such as communication activity, implying that habitats may influence processes such as information spreading and revealing new connections between human mobility and social networks.Comment: 7 pages, 5 figures (main text); 11 pages, 9 figures, 1 table (supporting information
    corecore