34 research outputs found

    Reversible changes in pancreatic islet structure and function produced by elevated blood glucose

    Get PDF
    Diabetes is characterized by hyperglycaemia due to impaired insulin secretion and aberrant glucagon secretion resulting from changes in pancreatic islet cell function and/or mass. The extent to which hyperglycaemia per se underlies these alterations remains poorly understood. Here we show that β-cell-specific expression of a human activating KATP channel mutation in adult mice leads to rapid diabetes and marked alterations in islet morphology, ultrastructure and gene expression. Chronic hyperglycaemia is associated with a dramatic reduction in insulin-positive cells and an increase in glucagon-positive cells in islets, without alterations in cell turnover. Furthermore, some β-cells begin expressing glucagon, whilst retaining many β-cell characteristics. Hyperglycaemia, rather than KATP channel activation, underlies these changes, as they are prevented by insulin therapy and fully reversed by sulphonylureas. Our data suggest that many changes in islet structure and function associated with diabetes are attributable to hyperglycaemia alone and are reversed when blood glucose is normalized

    Per-arnt-sim (PAS) domain-containing protein kinase is downregulated in human islets in type 2 diabetes and regulates glucagon secretion.

    Get PDF
    AIMS/HYPOTHESIS: We assessed whether per-arnt-sim (PAS) domain-containing protein kinase (PASK) is involved in the regulation of glucagon secretion. METHODS: mRNA levels were measured in islets by quantitative PCR and in pancreatic beta cells obtained by laser capture microdissection. Glucose tolerance, plasma hormone levels and islet hormone secretion were analysed in C57BL/6 Pask homozygote knockout mice (Pask-/-) and control littermates. Alpha-TC1-9 cells, human islets or cultured E13.5 rat pancreatic epithelia were transduced with anti-Pask or control small interfering RNAs, or with adenoviruses encoding enhanced green fluorescent protein or PASK. RESULTS: PASK expression was significantly lower in islets from human type 2 diabetic than control participants. PASK mRNA was present in alpha and beta cells from mouse islets. In Pask-/- mice, fasted blood glucose and plasma glucagon levels were 25 ± 5% and 50 ± 8% (mean ± SE) higher, respectively, than in control mice. At inhibitory glucose concentrations (10 mmol/l), islets from Pask-/- mice secreted 2.04 ± 0.2-fold (p < 0.01) more glucagon and 2.63 ± 0.3-fold (p < 0.01) less insulin than wild-type islets. Glucose failed to inhibit glucagon secretion from PASK-depleted alpha-TC1-9 cells, whereas PASK overexpression inhibited glucagon secretion from these cells and human islets. Extracellular insulin (20 nmol/l) inhibited glucagon secretion from control and PASK-deficient alpha-TC1-9 cells. PASK-depleted alpha-TC1-9 cells and pancreatic embryonic explants displayed increased expression of the preproglucagon (Gcg) and AMP-activated protein kinase (AMPK)-alpha2 (Prkaa2) genes, implying a possible role for AMPK-alpha2 downstream of PASK in the control of glucagon gene expression and release. CONCLUSIONS/INTERPRETATION: PASK is involved in the regulation of glucagon secretion by glucose and may be a useful target for the treatment of type 2 diabetes

    Cellular function in multicellular system for hormone-secretion: electrophysiological aspect of studies on alpha-, beta- and delta-cells of the pancreatic islet.

    No full text
    We review a new method to explore the cellular functions in multicellular system by application of the perforated patch-clamp technique to intact pancreatic islet of Langerhans. Using this approach, the integrity of the islet is preserved and intercellular communication via gap junctions and paracrine processes are maintained. By using low-resistance patch electrodes, rapid current responses can be monitored under voltage-clamp control. We have applied this methodology to answer questions not resolved by patch-clamp experiments on isolated single insulin-secreting beta-cells. First, the role of a K(+)-current dependent on Ca(2+)-influx for the termination of burst of action potentials in beta-cells could be documented. Neither the current, nor the bursting pattern of electrical activity is preserved in isolated beta-cells. Second, the conductance of gap junctions (approximately 1 nS) between beta-cells was determined. Third, electrical properties of glucagon-producing alpha- and somatostatin-secreting delta-cells and the different mechanisms for glucose-sensing in these cells could be explored. The findings emanating from these experiments may have implications for neuroscience research such as the mechanism of oscillatory electrical activity in general and processes involved in the glucose-sensing in some neurons, which response to changes of blood glucose concentration

    Pancreatic islet cells: a model for calcium-dependent peptide release

    No full text
    In mammals the concentration of blood glucose is kept close to 5 mmol∕l. Different cell types in the islet of Langerhans participate in the control of glucose homeostasis. β-cells, the most frequent type in pancreatic islets, are responsible for the synthesis, storage, and release of insulin. Insulin, released with increases in blood glucose promotes glucose uptake into the cells. In response to glucose changes, pancreatic α-, β-, and δ-cells regulate their electrical activity and Ca2+ signals to release glucagon, insulin, and somatostatin, respectively. While all these signaling steps are stimulated in hypoglycemic conditions in α-cells, the activation of these events require higher glucose concentrations in β and also in δ-cells. The stimulus-secretion coupling process and intracellular Ca2+ ([Ca2+]i) dynamics that allow β-cells to secrete is well-accepted. Conversely, the mechanisms that regulate α- and δ-cell secretion are still under study. Here, we will consider the glucose-induced signaling mechanisms in each cell type and the mathematical models that explain Ca2+ dynamics
    corecore