91 research outputs found

    Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model

    Get PDF
    Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children

    CD24 regulated gene expression and distribution of tight junction proteins is associated with altered barrier function in oral epithelial monolayers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Control of intercellular penetration of microbial products is critical for the barrier function of oral epithelia. We demonstrated that CD24 is selectively and strongly expressed in the cells of the epithelial attachment to the tooth and the epithelial lining of the diseased periodontal pocket and studies <it>in vitro </it>showed that CD24 regulated expression of the epithelial intercellular adhesion protein E-cadherin.</p> <p>Results</p> <p>In the present study, the barrier function of oral epithelial cell monolayers to low molecular weight dextran was assayed as a model for the normal physiological function of the epithelial attachment to limit ingress of microbial products from oral microbial biofilms. Paracellular transfer of low molecular weight dextran across monolayers of oral epithelial cells was specifically decreased following incubation with anti-CD24 peptide antibody whereas passage of dextran across the monolayer was increased following silencing of mRNA for CD24. Changes in barrier function were related to the selective regulation of the genes encoding zonula occludens-1, zonula occludens-2 and occludin, proteins implicated in tight junctions. More particularly, enhanced barrier function was related to relocation of these proteins to the cell periphery, compatible with tight junctions.</p> <p>Conclusion</p> <p>CD24 has the constitutive function of maintaining expression of selected genes encoding tight junction components associated with a marginal barrier function of epithelial monolayers. Activation by binding of an external ligand to CD24 enhances this expression but is also effective in re-deployment of tight junction proteins that is aligned with enhanced intercellular barrier function. These results establish the potential of CD24 to act as a potent regulator of the intercellular barrier function of epithelia in response to local microbial ecology.</p

    Patient-derived mutations within the N-terminal domains of p85α impact PTEN or Rab5 binding and regulation

    Get PDF
    The p85α protein regulates flux through the PI3K/PTEN signaling pathway, and also controls receptor trafficking via regulation of Rab-family GTPases. In this report, we determined the impact of several cancer patient-derived p85α mutations located within the N-terminal domains of p85α previously shown to bind PTEN and Rab5, and regulate their respective functions. One p85α mutation, L30F, significantly reduced the steady state binding to PTEN, yet enhanced the stimulation of PTEN lipid phosphatase activity. Three other p85α mutations (E137K, K288Q, E297K) also altered the regulation of PTEN catalytic activity. In contrast, many p85α mutations reduced the binding to Rab5 (L30F, I69L, I82F, I177N, E217K), and several impacted the GAP activity of p85α towards Rab5 (E137K, I177N, E217K, E297K). We determined the crystal structure of several of these p85α BH domain mutants (E137K, E217K, R262T E297K) for bovine p85α BH and found that the mutations did not alter the overall domain structure. Thus, several p85α mutations found in human cancers may deregulate PTEN and/or Rab5 regulated pathways to contribute to oncogenesis. We also engineered several experimental mutations within the p85α BH domain and identified L191 and V263 as important for both binding and regulation of Rab5 activit

    Endoplasmic Reticulum Stress-Induced JNK Activation Is a Critical Event Leading to Mitochondria-Mediated Cell Death Caused by β-Lapachone Treatment

    Get PDF
    β-lapachone (β-lap) is a bioreductive agent that is activated by the two-electron reductase NAD(P)H quinone oxidoreductase 1 (NQO1). Although β-lap has been reported to induce apoptosis in various cancer types in an NQO1-dependent manner, the signaling pathways by which β-lap causes apoptosis are poorly understood.β-lap-induced apoptosis and related molecular signaling pathways in NQO1-negative and NQO1-overexpressing MDA-MB-231 cells were investigated. Pharmacological inhibitors or siRNAs against factors involved in β-lap-induced apoptosis were used to clarify the roles played by such factors in β-lap-activated apoptotic signaling pathways. β-lap leads to clonogenic cell death and apoptosis in an NQO1- dependent manner. Treatment of NQO1-overexpressing MDA-MB-231 cells with β-lap causes rapid disruption of mitochondrial membrane potential, nuclear translocation of AIF and Endo G from mitochondria, and subsequent caspase-independent apoptotic cell death. siRNAs targeting AIF and Endo G effectively attenuate β-lap-induced clonogenic and apoptotic cell death. Moreover, β-lap induces cleavage of Bax, which accumulates in mitochondria, coinciding with the observed changes in mitochondria membrane potential. Pretreatment with Salubrinal (Sal), an endoplasmic reticulum (ER) stress inhibitor, efficiently attenuates JNK activation caused by β-lap, and subsequent mitochondria-mediated cell death. In addition, β-lap-induced generation and mitochondrial translocation of cleaved Bax are efficiently blocked by JNK inhibition.Our results indicate that β-lap triggers induction of endoplasmic reticulum (ER) stress, thereby leading to JNK activation and mitochondria-mediated apoptosis. The signaling pathways that we revealed in this study may significantly contribute to an improvement of NQO1-directed tumor therapies

    Different Conformations of Phosphatase and Tensin Homolog, Deleted on Chromosome 10 (PTEN) Protein within the Nucleus and Cytoplasm of Neurons

    Get PDF
    PTEN is a critical gene involved in the regulation of many cellular processes. The product of this gene has dual phosphatase activity and is able to dephosphorylate the 5′ end of the phosphatidylinositol (3,4,5)-trisphosphate. Within the cellular nucleus, this protein has been associated with regulation of the expression of many genes, although the mechanism of this regulation remains unclear. In this paper, two specific oligonucleotide aptamers were developed and selected, using the SELEX procedure, according to their ability to detect the PTEN protein in different subcellular compartments of neurons. While one aptamer was able to detect PTEN in the nucleus, the other recognized PTEN in the cytoplasm. The recognition pattern of PTEN by both aptamers was confirmed using antibodies in western blots of the proteins purified from mouse cerebellar homogenates and subcellular fractions. Additionally, we demonstrated that the two aptamers recognized different epitopes of the target peptide. The results presented here could not be fully explained by the canonical phosphatase structure of PTEN, suggesting the existence of different conformations of phosphatase in the nucleus and the cytoplasm

    Alternative HER/PTEN/Akt Pathway Activation in HPV Positive and Negative Penile Carcinomas

    Get PDF
    Copyright: 2011 Stankiewicz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: The pathogenesis of penile squamous cell carcinoma (PSCC) is not well understood, though risk factors include human papillomavirus (HPV). Disruption of HER/PTEN/Akt pathway is present in many cancers; however there is little information on its function in PSCC. We investigated HER family receptors and phosphatase and tension homolog (PTEN) in HPV-positive and negative PSCC and its impact on Akt activation using immunohistochemistry and fluorescent in situ hybridisation (FISH). Methodology/Principal Findings: 148 PSCCs were microarrayed and immunostained for phosphorylated EGFR (pEGFR), HER2, HER3, HER4, phosphorylated Akt (pAkt), Akt1 and PTEN proteins. EGFR and PTEN gene status were also evaluated using FISH. HPV presence was assessed by PCR. pEGFR expression was detected significantly less frequently in HPV-positive than HPV-negative tumours (p = 0.0143). Conversely, HER3 expression was significantly more common in HPV-positive cases (p = 0.0128). HER4, pAkt, Akt and PTEN protein expression were not related to HPV. HER3 (p = 0.0054) and HER4 (p = 0.0002) receptors significantly correlated with cytoplasmic Akt1 immunostaining. All three proteins positively correlated with tumour grade (HER3, p = 0.0029; HER4, p = 0.0118; Akt1, p = 0.0001). pEGFR expression correlated with pAkt but not with tumour grade or stage. There was no EGFR gene amplification. HER2 was not detected. PTEN protein expression was reduced or absent in 62% of tumours but PTEN gene copy loss was present only in 4% of PSCCs. Conclusions/Significance: EGFR, HER3 and HER4 but not HER2 are associated with penile carcinogenesis. HPV-negative tumours tend to express significantly more pEGFR than HPV-positive cancers and this expression correlates with pAkt protein, indicating EGFR as an upstream regulator of Akt signalling in PSCC. Conversely, HER3 expression is significantly more common in HPV-positive cases and positively correlates with cytoplasmic Akt1 expression. HER4 and PTEN protein expression are not related to HPV infection. Our results suggest that PSCC patients could benefit from therapies developed to target HER receptors.Peer reviewedFinal Published versio

    Synergistic inhibition of prostate cancer cell lines by a 19- nor hexafluoride vitamin D3 analogue and anti-activator protein 1 retinoid

    Get PDF
    The secosteroid hormones, all- trans- and 9- cis -retinoic acid and vitamin D3, have demonstrated significant capacity to control proliferation in itro of many solid tumour cell lines. Cooperative synergistic effects by these two ligands have been reported, and it is, therefore, possible that greater therapeutic effects could be achieved if these compounds were administered together. The role of retinoid-dependent anti-activator protein 1 (anti-AP-1) effects in controlling cancer cell proliferation appears significant. We have utilized an anti- AP-1 retinoid [2-(4,4-dimethyl-3,4-dihydro-2H-1 benzopyran-6-yl)carbonyl-2-(4-carboxyphenyl)-1,3,-dithiane; SR11238], which does not transactivate through a retinoic acid response element (RARE), and a potent vitamin D3analogue [1α,25(OH)2-16-ene-23-yne-26,27-F6-19-nor -D3, code name LH] together at low, physiologically safer doses against a panel of prostate cancer cell lines that represent progressively more transformed phenotypes. The LNCaP (least transformed) and PC-3 (intermediately transformed) cell lines were synergistically inhibited in their clonal growth by the combination of LH and SR11238, whereas SR11238 alone was essentially inactive. DU-145 cells (most transformed) were completely insensitive to these analogues. LNCaP cells, but neither PC-3 nor DU-145, underwent apoptosis in the presence of LH and SR11238. Transactivation of the human osteocalcin vitamin D response element (VDRE) by LH was not enhanced in the presence of SR11238, although the expression of E-cadherin in these cells was additively up-regulated in the presence of both compounds. These data suggest the anti-AP-1 retinoid and the vitamin D3 analogue may naturally act synergistically to control cell proliferation, a process that is interrupted during transformation, and that this combination may form the basis for treatment of some androgen-independent prostate cancer. © 1999 Cancer Research Campaig

    Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer

    Get PDF
    The phosphatidylinositol 3-kinase (PI3K) pathway is a critical signal transduction pathway that regulates multiple cellular functions. Aberrant activation of this pathway has been identified in a wide range of cancers. Several pathway components including AKT, PI3K and mTOR represent potential therapeutic targets and many small molecule inhibitors are in development or early clinical trials. The complex regulation of the pathway, together with the multiple mechanisms by which it can be activated, make this a highly challenging pathway to target. For successful inhibition, detailed molecular information on individual tumours will be required and it is already clear that different tumour types show distinct combinations of alterations. Recent results have identified alterations in pathway components PIK3CA, PTEN, AKT1 and TSC1 in bladder cancer, some of which are significantly related to tumour phenotype and clinical behaviour. Co-existence of alterations to several PI3K pathway genes in some bladder tumours indicates that these proteins may have functions that are not related solely to the known canonical pathway

    RNA delivery by extracellular vesicles in mammalian cells and its applications.

    Get PDF
    The term 'extracellular vesicles' refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA, which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell-cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle-associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo. Further progress in unravelling the basic mechanisms of extracellular vesicle biogenesis, transport, and cargo delivery and function is needed for successful clinical implementation. This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications
    corecore