4,010 research outputs found
Social Disinhibition: Piloting a New Clinical Measure in Individuals with Traumatic Brain Injury
Social disinhibition difficulties are common following traumatic brain injury (TBI). However, clinically sensitive tools to objectively assess the difficulties are lacking. This study aimed to pilot a new clinical measure of social disinhibition, the social disinhibition task (SDT). Whether social disinhibition is dependent on the type of social information judgements required and whether disinhibited responses can be adjusted with additional guidance were also examined. Participants were 31 adults (25 Male) with moderate-to-severe TBI and 22 adult (17 Male) healthy control participants. Participants viewed scenes of complex social situations and were asked to describe a character in them (Part A), describe a character while inhibiting inappropriate or negative responses (Part B), and describe a character while not only inhibiting negative responses, but also providing positive responses (Part C). One-half of the items contained a faux pas requiring participants to make inferences about a character's mental state. TBI and control participants responded similarly to Part A, although control participants responded less positively than TBI participants in the faux pas items. TBI participants were significantly impaired on Part B indicating they experienced difficulties in inhibiting automatic responding. TBI participants were however able to adjust their responding in Part C so that they respond similarly to the control participants. Between group differences were not detected in reaction time. Overall, the SDT appears to be suitable to detect social inhibition difficulties in clinical settings and provides a new direction for remediation of the difficulties in individuals with TBI
Assessing connectivity between an overlying aquifer and a coal seam gas resource using methane isotopes, dissolved organic carbon and tritium
Coal seam gas (CSG) production can have an impact on groundwater quality and quantity in adjacent or overlying aquifers. To assess this impact we need to determine the background groundwater chemistry and to map geological pathways of hydraulic connectivity between aquifers. In south-east Queensland (Qld), Australia, a globally important CSG exploration and production province, we mapped hydraulic connectivity between the Walloon Coal Measures (WCM, the target formation for gas production) and the overlying Condamine River Alluvial Aquifer (CRAA), using groundwater methane (CH4) concentration and isotopic composition (δ13C-CH4), groundwater tritium (3H) and dissolved organic carbon (DOC) concentration. A continuous mobile CH4 survey adjacent to CSG developments was used to determine the source signature of CH4 derived from the WCM. Trends in groundwater δ13C-CH4 versus CH4 concentration, in association with DOC concentration and 3H analysis, identify locations where CH4 in the groundwater of the CRAA most likely originates from the WCM. The methodology is widely applicable in unconventional gas development regions worldwide for providing an early indicator of geological pathways of hydraulic connectivity
Effects of epidural lidocaine analgesia on labor and delivery: A randomized, prospective, controlled trial
BACKGROUND: Whether epidural analgesia for labor prolongs the active-first and second labor stages and increases the risk of vacuum-assisted delivery is a controversial topic. Our study was conducted to answer the question: does lumbar epidural analgesia with lidocaine affect the progress of labor in our obstetric population? METHOD: 395 healthy, nulliparous women, at term, presented in spontaneous labor with a singleton vertex presentation. These patients were randomized to receive analgesia either, epidural with bolus doses of 1% lidocaine or intravenous, with meperidine 25 to 50 mg when their cervix was dilated to 4 centimeters. The duration of the active-first and second stages of labor and the neonatal apgar scores were recorded, in each patient. The total number of vacuum-assisted and cesarean deliveries were also measured. RESULTS: 197 women were randomized to the epidural group. 198 women were randomized to the single-dose intravenous meperidine group. There was no statistical difference in rates of vacuum-assisted delivery rate. Cesarean deliveries, as a consequence of fetal bradycardia or dystocia, did not differ significantly between the groups. Differences in the duration of the active-first and the second stages of labor were not statistically significant. The number of newborns with 1-min and 5-min Apgar scores less than 7, did not differ significantly between both analgesia groups. CONCLUSION: Epidural analgesia with 1% lidocaine does not prolong the active-first and second stages of labor and does not increase vacuum-assisted or cesarean delivery rate
Molecular Genetics of T Cell Development
T cell development is guided by a complex set of transcription factors that act recursively, in different combinations, at each of the developmental choice points from T-lineage specification to peripheral T cell specialization. This review describes the modes of action of the major T-lineage-defining transcription factors and the signal pathways that activate them during intrathymic differentiation from pluripotent precursors. Roles of Notch and its effector RBPSuh (CSL), GATA-3, E2A/HEB and Id proteins, c-Myb, TCF-1, and members of the Runx, Ets, and Ikaros families are critical. Less known transcription factors that are newly recognized as being required for T cell development at particular checkpoints are also described. The transcriptional regulation of T cell development is contrasted with that of B cell development, in terms of their different degrees of overlap with the stem-cell program and the different roles of key transcription factors in gene regulatory networks leading to lineage commitment
A global disorder of imprinting in the human female germ line
Imprinted genes are expressed differently depending on whether they are carried by a chromosome of maternal or paternal origin. Correct imprinting is established by germline-specific modifications; failure of this process underlies several inherited human syndromes. All these imprinting control defects are cis-acting, disrupting establishment or maintenance of allele-specific epigenetic modifications across one contiguous segment of the genome. In contrast, we report here an inherited global imprinting defect. This recessive maternal-effect mutation disrupts the specification of imprints at multiple, non-contiguous loci, with the result that genes normally carrying a maternal methylation imprint assume a paternal epigenetic pattern on the maternal allele. The resulting conception is phenotypically indistinguishable from an androgenetic complete hydatidiform mole, in which abnormal extra-embryonic tissue proliferates while development of the embryo is absent or nearly so. This disorder offers a genetic route to the identification of trans-acting oocyte factors that mediate maternal imprint establishment
Strong Casimir force reduction through metallic surface nanostructuring
The Casimir force between bodies in vacuum can be understood as arising from
their interaction with an infinite number of fluctuating electromagnetic
quantum vacuum modes, resulting in a complex dependence on the shape and
material of the interacting objects. Becoming dominant at small separations,
the force plays a significant role in nanomechanics and object manipulation at
the nanoscale, leading to a considerable interest in identifying structures
where the Casimir interaction behaves significantly different from the
well-known attractive force between parallel plates. Here we experimentally
demonstrate that by nanostructuring one of the interacting metal surfaces at
scales below the plasma wavelength, an unexpected regime in the Casimir force
can be observed. Replacing a flat surface with a deep metallic lamellar grating
with sub-100 nm features strongly suppresses the Casimir force and for large
inter-surfaces separations reduces it beyond what would be expected by any
existing theoretical prediction.Comment: 11 pages, 8 figure
Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway
The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant provides a unique platform to explore these possibilities
Guillain-Barré syndrome: a century of progress
In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS
Characterising the incidence and mode of visceral stent failure after fenestrated endovascular aneurysm repair (FEVAR)
Background
In FEVAR, visceral stents provide continuity and maintain perfusion between the main body of the stent and the respective visceral artery. The aim of this study was to characterise the incidence and mode of visceral stent failure (type Ic endoleak, type IIIa endoleak, stenosis/kink, fracture, crush and occlusion) after FEVAR in a large cohort of patients at a high-volume centre.
Methods
A retrospective review of visceral stents placed during FEVAR over 15 years (February 2003-December 2018) was performed. Kaplan-Meier analyses of freedom from visceral stent-related complications were performed. The outcomes between graft configurations of varying complexity were compared, as were the outcomes of different stent types and different visceral vessels.
Results
Visceral stent complications occurred in 47/236 patients (19.9%) and 54/653 stents (8.3%). Median follow up was 3.7 years (IQR 1.7–5.3 years). There was no difference in visceral stent complication rate between renal, SMA and coeliac arteries. Visceral stent complications were more frequent in more complex grafts compared to less complex grafts. Visceral stent complications were more frequent in uncovered stents compared to covered stents. Visceral stent-related endoleaks (type Ic and type IIIa) occurred exclusively around renal artery stents. The most common modes of failure with SMA stents were kinking and fracture, whereas with coeliac artery stents it was external crush.
Conclusion
Visceral stent complications after FEVAR are common and merit continued and close long-term surveillance. The mode of visceral stent failure varies across the vessels in which the stents are located
- …