10 research outputs found

    Soil health, crop productivity, microbial transport, and mine spoil response to biochars

    Get PDF
    Biochar is being evaluated by scientists from the United States Department of Agriculture (USDA) Agricultural Research Service (ARS) for its potential to sequester soil C, to improve soil health, and to increase crop yields. ARS scientists from multiple locations such as Florence, SC, Kimberly, ID, Bowling Green, KY, Corvallis, OR, and St. Paul, MN, are conducting investigations with agronomic experiments at the laboratory, greenhouse, and field plot scales. To further expand biochars utility, ARS scientists have collaborated with United States Environmental Protection Agency (US EPA) investigators to reclaim mine-impacted soils. In the agronomic investigations, both positive and negative aspects of biochar application were revealed. In some experiments, biochars were reported to have no effect on crop yields, and minimal impact on movement of microbial pathogens through soil. In other experiments, biochars were reported to improve soil fertility, increase water retention, and bind with heavy metals in solutions and in mine spoil soils. This variation in biochars influence, substantiates and encourages further work on the designer biochar concept, which states that the biochars can be crafted for targeted agronomic and environmental purposes. There is a need to broadcast the successes and failures of biochar research reported by scientists from both agencies. Consequently, the objectives of this review are: to report on biochar effectiveness as a soil amendment; to ascertain its ability to modify soil properties, to evaluate its impact on soil leaching of microbes; and its potential capacity to help reclaim mine spoil sites

    Does fertilizing corn with poultry litter enrich the grain with mineral nutrients?

    No full text
    Whether poultry litter (PL) increases concentration of selected mineral elements in corn (Zea mays L.) grain has not been well investigated. The objective of this study was to determine whether fertilizing corn with PL enriches the grain and other plant parts with selected mineral elements. Corn was grown in the field in northern Mississippi with no fertilization (UTC) or fertilization with 9 or 18 Mg ha–1 PL, or 202 kg ha–1 NH4NO3–N applied in the fall vs. spring. Poultry litter, regardless of application timing, increased soil total N and extractable P, K, Mg, Cu, Mn, and Zn by up to twofold relative to NH4NO3–N. Litter also increased concentration of N, P, Cu, and Zn in leaves and stems but did not particularly enrich the grain with any of the measured elements. Grain N, P, K, Mg, Fe, Mn, and Zn concentrations were highest in corn fertilized with 202 kg ha–1 NH4NO3–N applied in the spring. Poultry litter increased grain concentrations of these elements to equal those of the NH4NO3–N fertilized corn only if it also increased the N level in the plant and the grain. High positive correlation of grain N with grain P, K, Mg, Fe, Zn, and Mn suggests that conditions that increase grain protein level would also increase the levels of P, K, Mg, Fe, Zn, and Mn in the grain and that the level of mineral elements in corn grain is dependent on the level of N nutrition of the corn plant

    Nitrogen mineralization from broiler litter applied to southeastern Coastal Plain soils

    Get PDF
    A field study was conducted to determine nitrogen (N) mineralization from broiler litter (EL) in two Coastal Plain soils of differing texture, sandy (Tifton loamy sand) or clayey (Greenville sandy clay loam). These soils represented the broad range in surface textures commonly found in soils used for agricultural production in the southeastern Coastal Plain. Published protocols used for the study were designed by the ARS mineralization team. In addition to measuring ammonium (NH4-N) and nitrate (NO3-N) in the soil as a measure of N mineralization, both total C and total N were measured to determine the impact of a single BL amendment on C sequestration and N accumulation. Amounts of N in the soil from BL mineralization over 70 days were identical for both soils, 46.4 mg N kg-1 soil (0.046%), but differences occurred in timing of the mineralization processes. In the sandy Tifton soil, depletion of NH4-N and nitrification of the NH4-N to NO3-N occurred simultaneously. The NH4-N from the BL was depleted in 21 days while peak NO3-N concentrations in the soil were found at 28 days. In the clayey Greenville soil, NH,-N concentrations from BL mineralization increased for 21 days and then decreased until reaching background levels by 70 days. Nitrate concentrations never did increase in the BL amended Greenville soil, indicating both that the nitrification rate was much slower than the ammonification race, and most likely, that what NO-N was produced was lost from the soil by denitrification under wet conditions. The combination of soil textural and microclimate differences along with greater protection of the BL residues in the clayey soil than in the sandy soil are believed responsible for the observed N mineralization differences between the two soils. Previous research has shown that N mineralization rate is positively correlated with sand content and negatively correlated with clay content of soils, and the results of this study concurred with those findings. Measurements of total C and total N in both Coastal Plain soils showed that overall increases were small with a single BL amendment, and it was concluded that long-term studies are needed to investigate C sequestration and N accumulation. It was concluded from the study that there is a high probability that BL mineralization rates will be significantly slower on the more clayey Coastal Plain soils than on very sandy ones, and that farm managers should take these rates into consideration when planning timing and amounts of BL applications

    Year-round poultry litter decomposition and N, P, K and Ca release

    No full text
    Poultry litter is an important nutrient source in agriculture, although little information is available regarding its decomposition rate and nutrient release. To evaluate these processes, poultry litter (PL) was applied to the soil to supply 100, 200 and 300 kg ha-1 N contained in 4,953, 9,907 and 14,860 kg ha-1 PL, respectively. The litter bag technique was used to monitor the process of decomposition and nutrient release from the litter. These bags were left on the soil surface and collected periodically (after 15, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, and 365 days). The dry matter (DM) loss was highest (35 %) after the first 30 days of field incubation. The highest nutrient release occurred in the first 60 days on the field, when 40, 34, 91, and 39 %, respectively, of N, P, K, and Ca of the initial PL dry matter (4,860 kg ha-1) was already released to the soil. In absolute terms, these percentages represent 40, 23, 134, and 69 kg ha-1 of N, P, K, and Ca and these values doubled and tripled as the PL fertilization rates increased to 9,907 and 14,860 kg ha-1, respectively. After one year of field incubation, the residual contents in the litter were 27, 15, 18 and 30 % of the initial DM , and N, P and Ca, respectively. The release rate of K was the fastest and 91 % of the K had been released from the PL after 30 days of field incubation
    corecore