46 research outputs found

    A systematic study of magnetic field in Relativistic Heavy-ion Collisions in the RHIC and LHC energy regions

    Get PDF
    The features of magnetic field in relativistic heavy-ion collisions are systematically studied by using a modified magnetic field model in this paper. The features of magnetic field distributions in the central point are studied in the RHIC and LHC energy regions. We also predict the feature of magnetic fields at LHC sNN\sqrt{s_{NN}}= 900, 2760 and 7000 GeV based on the detailed study at RHIC sNN\sqrt{s_{NN}} = 62.4, 130 and 200 GeV. The dependencies of the features of magnetic fields on the collision energies, centralities and collision time are systematically investigated, respectively.Comment: 8 pages, 7 figure

    Collective Flow Distributions and Nuclear Stopping in Heavy-ion Collisions at AGS, SPS and RHIC

    Full text link
    We study the production of proton, antiproton and net-proton at \AGS, \SPS and \RHIC within the framework non-uniform flow model(NUFM) in this paper. It is found that the system of RHIC has stronger longitudinally non-uniform feature than AGS and SPS, which means that nuclei at RHIC energy region is much more transparent. The NUFM model provides a very good description of all proton rapidity at whole AGS, SPS and RHIC. It is shown that our analysis relates closely to the study of nuclear stopping and longitudinally non-uniform flow distribution of experiment. This comparison with AGS and SPS help us to understand the feature of particle stopping of thermal freeze-out at RHIC experiment.Comment: 16 pages,7 figure

    Cold nuclear matter effects on the color singlet J/psi production in d-Au collisions at RHIC

    Full text link
    We use a Modified DKLMT model (called M-DKLMT model) to study the cold nuclear matter (CNM) effects on the color singlet J/psi production in dAu collisions at RHIC. The cold nuclear effect of dipole-nucleus interactions has been investigated by introducing a nuclear geometric effect function f({\xi}) to study the nuclear geometry distribution effect in relativistic heavy-ion collisions. The dependencies of nuclear modification factors (RdA) on rapidity and centrality are studied and compared to experimental data. It is found that the M-DKLMT model can well describe the experimental results at both forward- and mid-rapidity regions in dAu collisions at RHIC.Comment: 7 pages, 4 figure

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    THE STUDY OF COLLECTIVE FLOW AND BARYON STOPPING OF RELATIVISTIC HEAVY-ION COLLISIONS IN THE AGS, SPS, RHIC AND LHC ENERGY REGIONS

    Full text link
    We study the features of baryon stopping and collective flow in relativistic heavy-ion collisions at energies reached at the CERN Large Hadron Collider (LHC), BNL Relativistic Heavy Ion Collider (RHIC), CERN Super Proton Synchrotron (SPS) and BNL Alternating Gradient Synchrotron (AGS) with the model of Non-Uniform Flow Model (NUFM) in this paper. The dependencies of the features of baryon stopping and collective flow on the collision energies are investigated. </jats:p
    corecore