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The features of magnetic field in relativistic heavy-ion collisions are systematically studied by using a modified magnetic field
model in this paper. The features of magnetic field distributions in the central point are studied in the RHIC and LHC energy
regions. We also predict the feature of magnetic fields at LHC √𝑠𝑁𝑁 = 900, 2760, and 7000GeV based on the detailed study at
RHIC √𝑠𝑁𝑁 = 62.4, 130, and 200GeV. The dependencies of the features of magnetic fields on the collision energies, centralities,
and collision time are systematically investigated, respectively.

1. Introduction

Collisions of two heavy nuclei at high energy serve as a
means for creating and exploring strongly interacting matter
at high possible energy densities where a new extreme state
of matter, the deconfined quark-gluon plasma (QGP), is
expected to be formed [1–3]. Besides the formation of QGP,
relativistic heavy-ion collisions create also extremely strong
(electro)magnetic field due to the relativistic motion of the
colliding heavy ions carrying large positive electric charge [3–
6].

Now we turn to a key question: can the Chiral magnetic
effect (CME) occur in heavy-ion collisions?The answer to the
question seems to be positive. Two elements are needed for
the CME to occur: an external magnetic field and a locally
nonzero axial charge density. The relativistically moving
heavy ions, typicallywith large positive charges (e.g., +79e, for
Au), carry strong magnetic (and electric) fields with them. In
the shortmoments before/during/after the impact of two ions
in noncentral collisions, there is a very strong magnetic field
in the reaction zone [5–7]. In fact, such amagnetic field is esti-
mated to be of the order of𝑚2

𝜋
≈ 1018 Gauss [4, 8, 9], probably

the strongest, albeit transient, magnetic field in the present

universe. The other required element, a locally nonvanishing
axial charge density, can also be created in the reaction zone
during the collision process through sphaleron transitions
(see, e.g., [10] for discussions and references therein). As such,
it appears at least during the very early stage of a heavy-ion
collision and there can be both strong magnetic field and
nonzero axial charge density in the created hot matter.

It is suggested by [5, 6, 11–13] that off-central heavy-
ion collisions can create strong transient magnetic fields
due to the fast, oppositely directed motion of two colliding
ions. Thus, heavy-ion collisions provide a unique terrestrial
environment to study QCD in strong magnetic fields [14–17].
It has been shown that a strong magnetic field can convert
topological charge fluctuations in the QCD vacuum into
global electric charge separation with respect to the reaction
plane. This so-called Chiral magnetic effect may serve as a
sign of the local P and CP violation of QCD.

Experimentally, the STAR [18–21], PHENIX [22], and
ALICE [23] collaborations have presented the measurements
of CME by the two-particle or three-particle correlations of
charged particles with respect to the reaction plane, which
are qualitatively consistent with the CME. A clear signal com-
patible with a charge dependent separation relative to the
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reaction plane is observed, which shows little or no collision
energy dependence when compared to measurements at
RHIC energies. This provides a new insight into understand-
ing the nature of the charge-dependent azimuthal correla-
tions observed at RHIC and LHC energies.

Kharzeev, Mclerran, andWarringa (KMW) [5] suggested
that, in the vicinity of the deconfinement phase transition and
under the influence of the strong magnetic field generated
by the colliding nuclei, the quark spin alignment along the
direction of the angular momentum and the imbalance of the
left- and right-handed quarks generate an electromagnetic
current. The experimental search of those effects has inten-
sified recently, following the realization that the consequent
quark fragmentation into charged hadrons results in a charge
separation along the direction of the magnetic field and
perpendicular to the reaction plane.

The magnitude of the effect either should not change
or should decrease with increasing energy as long as a
deconfined state of matter is formed in a heavy-ion collision.
In addition, in [24, 25] it is also suggested that there should be
no energy dependence between the top RHIC and the LHC
energies, based on arguments related to the universality of
the underlying physical process, without, however, explicitly
quantifying what the contribution of the different values and
time evolution of the magnetic field for different energies will
be. On the other hand, it is argued [26] that the CME should
strongly decrease at higher energies because the magnetic
field decays more rapidly. Such a spread in the theoretical
expectations makes it important to measure the charge-
dependent azimuthal correlations at the LHC, where the
collision energy is an order of magnitude higher compared
to the RHIC.

Charge separation needs a symmetry axis along which
the separation can take place. The only symmetry axis in a
heavy-ion collision is along the angular momentum which is
perpendicular to the reaction plane. In central collisions there
is no symmetry axis, so in that case charge separation should
vanish. The strong magnetic field and the QCD vacuum
can both completely be produced in the noncentral nucleus-
nucleus collision.

In [27], we used the Wood-Saxon nucleon distribution
instead of a uniform one to improve the magnetic field calcu-
lation of the magnetic field for noncentral collision. It was
argued that the magnitude of the magnetic field decreases at
higher energies. The detailed research of the magnetic field
dependencies on collision energies, impact parameter, and
collision times is presented in this paper.

The paper is organized as follows. The improved calcula-
tion of magnetic field and the comparison of our new results
with that given by KMW are described in Section 2, along
with the predicted results of LHC energy region. A summary
is given in Section 3.

2. The Improved Calculation of Magnetic Field

Thesituationwith the experimental search for the local strong
parity violation drastically changed once it was noticed [28–
30] that in noncentral nuclear collisions it would lead to
the asymmetry in the emission of positively and negatively

charged particle perpendicular to the reaction plane. Such a
charge separation is a consequence of the difference in the
number of quarks with positive and negative helicities posi-
tioned in the strong magnetic field of a noncentral nuclear
collision, the so-called Chiral magnetic effect.

We begin with a charged particle moving along the
direction of the 𝑧 axis. The magnetic field around it can be
given by

�⃗� =
1

𝑐2
V⃗ × �⃗� (1)

If themovement is relativistic, at the time 𝑡 = 0, the charge
is the origin of the coordinate.Themagnitude of themagnetic
field �⃗� is given by

𝐵 =
1

4𝜋𝜀
0
𝑐2

𝑞V (1 − 𝛽2) sin 𝜃

𝑟2(1 − 𝛽2 sin 𝜃)3/2
. (2)

Now we consider a particle with charge 𝑍 and rapidity 𝑌
traveling along the 𝑧 axis. At 𝑡 = 0 the particle can be found
at position �⃗�

⊥
; the magnetic field at the position �⃗� = (�⃗�

⊥
, 𝑧)

caused by the particle is given by

𝑒�⃗� (�⃗�) = 𝑍𝛼EM sinh𝑌

×
(�⃗�
⊥
− �⃗�
⊥
) × ⃗𝑒
𝑧

[(�⃗�
⊥
− �⃗�
⊥
)
2
+ (𝑡 sinh𝑌 − 𝑧 cosh𝑌)2]

3/2
.

(3)

Now we suppose that two similar nuclei with charge 𝑍
and radius 𝑅 are traveling in the positive and negative 𝑧
direction with rapidity 𝑌

0
. At 𝑡 = 0 they have a noncentral

collision with impact parameter 𝑏 at the origin point.We take
the center of the two nuclei at 𝑥 = ±𝑏/2 at time 𝑡 = 0 so that
the direction of 𝑏 lies along the 𝑥 axis.

As the nuclei are nearly traveling with the speed of
light in typical heavy-ion collision experiments, the Lorentz
contraction factor 𝛾 is so large that we can consider the two
included nuclei as pancake shaped. As a result, the nucleon’s
number density of each nucleus at �⃗� = (�⃗�

⊥
, 𝑧) can be given

by

𝜌
𝑠±
(�⃗�


⊥
) =

2

4/3𝜋𝑅3
√𝑅2 − (�⃗�

⊥
±
�⃗�

2
)

2

(4)

As a result, it seems that the nucleon distribution on
average in a nucleus is an approximate result before consid-
ering the Lorentz contraction. In [1], KMW model used the
uniform nuclear distribution as the nuclear distribution. But
for a real situation, the nucleon distribution is not strictly
uniform. It seems more reasonable to use the Wood-Saxon
distribution in place of the uniform distribution. We use the
Wood-Saxon distribution in this paper:

𝑛
𝐴 (𝑟) =

𝑛
0

1 + exp ((𝑟 − 𝑅) /𝑑)
, (5)
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Figure 1: The dependencies of magnetic fields on impact parameters at different proper times 𝜏 at different energies of central mass system
of√𝑠𝑁𝑁 = 62.4GeV (a), 130GeV (b), 200GeV (c), 900GeV (d), 2760GeV (e), and 7000GeV (f), respectively.
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Figure 2:The dependencies of the magnetic field on proper time and impact parameters for Au-Au collisions at RHIC collision energies with
√𝑠 = 200GeV (a),√𝑠 = 130GeV (b), and√𝑠 = 64GeV (c), respectively.

where 𝑛
0
= 0.17 fm−3, 𝑑 = 0.54 fm, and the radius 𝑅 =

1.12A1/3 fm. Considering the Lorentz contraction, the den-
sity in the two-dimensional plane can be given by

𝜌
±
(�⃗�


⊥
) = 𝑁 ⋅ ∫

𝑅

−𝑅

𝑑𝑧


×
𝑛
0

1 + exp ((√(𝑥 ∓ 𝑏/2)
2
+ 𝑦
2
+ 𝑧
2
− 𝑅) /𝑑)

,

(6)

where𝑁 is the normalization constant.The number densities
should be normalized as

∫𝑑�⃗�


⊥
𝜌
±
(�⃗�


⊥
) = 1. (7)

We now estimate the strength of the magnetic field at
position �⃗� = (�⃗�

⊥
, 𝑧) caused by the two traveling nuclei. We

are only interested in the time 𝑡 > 0, that is, just after the
collision. Then we can split the contribution of particles to
the magnetic field in the following way:

�⃗� = �⃗�
+

𝑠
+ �⃗�
−

𝑠
+ �⃗�
+

𝑝
+ �⃗�
−

𝑝
, (8)

where �⃗�±
𝑠
and �⃗�±

𝑝
are the contributions of the spectators and

the participants moving in the positive or negative 𝑧 direc-
tion, respectively. For spectators, we assume that they do not

scatter at all and that they keep travellingwith the beam rapid-
ity 𝑌
0
. According to (3), we use the density above and find

𝑒�⃗�
±

𝑠
(𝜏, 𝜂, �⃗�

⊥
)

= ±𝑍𝛼EM sinh (𝑌
0
∓ 𝜂)∫𝑑

2
�⃗�


⊥
𝜌
±
(�⃗�


⊥
)

× [1 − 𝜃
∓
(�⃗�


⊥
)]

(�⃗�
⊥
− �⃗�
⊥
) × ⃗𝑒
𝑧

[(�⃗�
⊥
− �⃗�
⊥
)
2
+ 𝜏2 sinh (𝑌

0
∓ 𝜂)
2
]
3/2

,

(9)

where 𝜏 = (𝑡2 − 𝑧2)1/2 is the proper time, 𝜂 = (1/2) ln[(𝑡
+𝑧)/(𝑡 − 𝑧)] is the space-time rapidity, and

𝜃
∓
(�⃗�


⊥
) = 𝜃[𝑅

2
− (�⃗�


⊥
±
�⃗�

2
)

2

] . (10)

Here, we would like to neglect the contribution from the
particles created by the interactions and so we just need to
take into account the contribution of the participants that
were originally there. The distribution of participants that
remain travelling along the beam axis is given by

𝑓 (𝑌) =
𝑎

2 sinh (𝑎𝑌
0
)
𝑒
𝑎𝑌
, −𝑌

0
≤ 𝑌 ≤ 𝑌

0
. (11)
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Figure 3: The dependencies of the magnetic field on proper time and impact parameters for Pb-Pb collisions at LHC collision energies with
√𝑠 = 900GeV (a),√𝑠 = 2760GeV (b), and√𝑠 = 7000GeV (c), respectively.

Experimental data shows that 𝑎 ≈ 1/2, consistent with the
baryon junction stopping mechanism. The contribution of
the participants to the magnetic field can be also given by

𝑒�⃗�
±

𝑝
(𝜏, 𝜂, �⃗�

⊥
)

= ±𝑍𝛼EM ∫𝑑
2
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⊥
)
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) × ⃗𝑒
𝑧

[(�⃗�
⊥
− �⃗�
⊥
)
2
+ 𝜏2 sinh (𝑌 ∓ 𝜂)

2
]
3/2

.

(12)

We calculate the magnetite of the magnetic field at the
origin (𝜂 = 0, �⃗�

⊥
= 0) in which case it is pointing in the

𝑦 direction. We took a Au-Au collision with different beam
rapidity and different impact parameters.

Figure 1 shows that the dependencies of magnetic fields
of the central point on impact parameters at different proper
times 𝜏 at different center-of-mass energies for RHIC and
LHC, respectively. Figures 1(a), 1(b), and 1(c) are for the
results in RHIC energy region. It is shown from Figures
1(a), 1(b), and 1(c) that the magnitudes of the magnetic fields
increase with the increasing impact parameter ay proper time
𝜏 ≤ 1.0 fm. Figures 1(d), 1(e), and 1(f) are for the results
in LHC energy region. Figures 1(d) and 1(e) show that the
magnitudes of the magnetic field increase with the increasing

impact parameter only at proper time 𝜏 ≤ 0.05 fm but start
to decrease with increasing impact parameter when proper
time 𝜏 > 0.05 fm. Figure 1(f) shows that the magnitudes
of the magnetic field decrease with the increasing impact
parameter at proper time 𝜏 ≥ 0.02 fm at√𝑠𝑁𝑁 = 7000GeV. In
comparisonwith that of RHIC energy region, we find that the
magnitudes of themagnetic fields of 𝜏 ≥ 2 fm fall to zeromore
rapidly at LHC energy region.The variation characteristics of
magnetic field with impact parameter at RHIC energy region
are different from that of LHC energy region.

The dependencies of the magnetic field on proper time
and impact parameters for Au-Au collisions at RHIC energy
region with √𝑠 = 200GeV, √𝑠 = 130GeV, and √𝑠 = 64GeV
are shown in Figures 2(a), 2(b), and 2(c), respectively. The
same tendency of the dependencies of the magnetic field
on proper time and impact parameters at RHIC is observed
from Figure 2. The maximum position of magnetic field is
located at much smaller proper time 𝜏 ∼ 0.02 fm and much
larger impact parameter 𝑏 ≃ 12 fm shown in Figure 2. It
is observed that the magnitude of magnetic field decreases
sharply with increasing proper time 𝜏 and decreases with
decreasing impact parameter 𝑏.

Figures 3(a), 3(b), and 3(c) show that the maximum of
magnetic field decrease with the increase of collision energies
when √𝑠 from 900GeV to 7000GeV at LHC energy region.
It is found that the maximum of magnetic field are about
3.0 × 103MeV2, 4.0 × 102MeV2, and 80.0MeV2 at√𝑠 = 900,
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Figure 4: The dependencies of the magnetic field on collision energies of central mass system less than 200GeV at RHIC energy region at
different impact parameters for Au-Au collisions at different proper times for 𝜏 = 0.02 fm (a), 𝜏 = 0.05 fm (b), 𝜏 = 0.2 fm (c), 𝜏 = 0.5 fm (d),
𝜏 = 1.0 fm (e), 𝜏 = 2.0 fm (f), and 𝜏 = 3.0 fm (g), respectively.
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Figure 5: The dependencies of the magnetic field on collision energies of central mass system of LHC energy region of Pb-Pb collisions at
different proper times at different impact parameters for 𝑏 = 2 fm (a), 𝑏 = 4 fm (b), 𝑏 = 8 fm (c), and 𝑏 = 12 fm (d), respectively.

√𝑠 = 2760, and√𝑠 = 7000GeV, respectively. These are much
smaller than that in RHIC energy region. The same variation
characteristics of magnetic field with impact parameter and
proper time are observed at LHC energy region and that of
RHIC.

The dependencies of the magnetic field on collision ener-
gies√𝑠 at RHIC energy region at different impact parameters
for Au-Au collisions at different proper time 𝜏 are shown in
Figure 4. It is found that the dependencies of magnetic field
on collision energies at different impact parameter are all on
the rising trend at 𝜏 = 0.02 fm and 𝜏 = 0.05 fm as shown in

Figures 4(a) and 4(b). Figure 4(c) (𝜏 = 0.2 fm) shows that the
magnetic fields increasewith the increase of collision energies
when √𝑠 ≤ 30GeV but then decrease with the increase of
collision energies when √𝑠 > 30GeV. As the proper time
𝜏 increases to 𝜏 ≥ 0.5 as shown in Figures 4(d), 4(e), 4(f),
and 4(g), the magnetic fields decrease with the increase of
collision energies and decrease more rapidly of more off-
central collisions of 𝑏 = 12 than the more central collisions
of 𝑏 = 2 and 4 fm.

Figure 5 shows that the dependencies of the magnetic
field on collision energies of central mass system of LHC
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Figure 6: The dependencies of the magnetic field on collision energies of central mass system and impact parameters at different proper
times for 𝜏 = 0.02 fm (a) and 𝜏 = 0.05 fm (b).
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Figure 7:The dependencies of themagnetic field on collision energies of central mass system and impact parameters at different proper times
for 𝜏 = 1.0 fm (a), 𝜏 = 2.0 fm (b), and 𝜏 = 3.0 fm (c), respectively.
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energy region of Pb-Pb collisions at different proper times at
different impact parameters for 𝑏 = 2 fm, 𝑏 = 4 fm, 𝑏 = 8 fm,
and 𝑏 = 12 fm with different proper time 𝜏. It is found that
the magnitudes of magnetic fields decrease with increasing
energy at LHC energy region, and the speed of decreasing
at large impact parameter such as 𝑏 = 12 fm (shown in
Figure 5(d)) is more quick than that of more central collision
such as 𝑏 = 2 fm (shown in Figure 5(a)). The magnetic field
approaches zero as 𝜏 ≥ 1.0 fm when 𝑏 = 12 fm.

The dependencies of the magnetic field on collision ener-
gies of central mass system and impact parameters at differ-
ent proper times for 𝜏 = 0.02 fm, 0.05 fm, 1.0 fm, 2.0 fm, and
3.0 fm are shown in Figures 6 and 7, respectively. The three-
dimensional schemes of different proper time show that the
large magnetic fields are produced during small 𝜏, large
impact parameter, and √(𝑠

𝑁𝑁
) ≤ 500GeV energy regions.

Themagnetic fields decrease with increasing collision energy
during √(𝑠

𝑁𝑁
) ≥ 500GeV. The maximum of magnetic field

is 𝑒𝐵 ≃ 50MeV2 when 𝜏 = 2.0 fm, but that of 𝜏 = 0.02 fm is
𝑒𝐵 ≃ 105MeV2.

3. Summary and Conclusion

It is found that the relativisticallymoving heavy ions, typically
with large positive charges, carry strong magnetic (and elec-
tric) fields with them. In the short moments before/during/
after the impact of two ions in noncentral collisions, there
is a very strong magnetic field in the reaction zone. In fact,
such a magnetic field is estimated to be of the order of
𝑚2
𝜋
≈ 1018 Gauss, probably the strongest magnetic field in the

present universe. It appears at least during the very early stage
of a heavy-ion collision and there can be both strong mag-
netic field and nonzero axial charge density in the created hot
matter.

It is suggested that off-central heavy-ion collisions can
create strong transient magnetic fields due to the fast, oppo-
sitely directed motion of two colliding ions. Thus, a unique
terrestrial environment to study QCD in strong magnetic
fields is provided in relativistic heavy-ion collisions. A strong
magnetic field can convert topological charge fluctuations in
the QCD vacuum into global electric charge separation with
respect to the reaction plane. This so-called Chiral magnetic
effect may serve as a sign of the local P and CP violation of
QCD.

The features of magnetic fields at LHC√𝑠𝑁𝑁 = 900, 2760,
and 7000GeV and at RHIC √𝑠𝑁𝑁 = 62.4, 130, and 200GeV
are systematically discussed.The dependencies of the features
of magnetic fields on the collision energies, centralities, and
collision time are systematically investigated, respectively.

We show that an enormous magnetic field can indeed be
created in off-central heavy-ion collisions. The magnitude of
the field is quite large, especially just after the collision, and
decreases rapidly with time. The drop velocity increases with
the collision energy increase. It is shown that the magnitudes
of magnetic fields decrease with increasing energy at LHC
energy region, and the speed of decreasing at large impact
parameter such as 𝑏 = 12 fm is more quick than that of more
central collision such as 𝑏 = 2 fm.

The dependencies of the magnetic field on proper time
and impact parameters for at RHIC and LHC energy regions,
respectively. In comparison with that of RHIC energy region,
we find that themagnitudes of themagnetic fieldswith proper
time fall more rapidly at LHC energy region. The variation
characteristics of magnetic field with impact parameter at
RHIC energy region are different from that of LHC energy
region. The maximum position is located in the small proper
time (𝜏 ∼ 0.02 fm), more off-central collisions of (𝑏 ≃ 12 fm),
and√𝑠𝑁𝑁 ∼ 200GeV.Themaximum of magnetic field in our
calculation is about 𝑒𝐵 ≃ 105MeV2 when 𝜏 = 0.02, 𝑏 ≃ 12 fm,
and√𝑠𝑁𝑁 ∼ 200GeV.

When surveying the dependencies of magnetic field
on the proper time 𝜏, we find that the magnitude of the
magnetic field decreases with the increasing energy when
√𝑠𝑁𝑁 ≥ 200GeV.The systematic research of magnetic field is
consistentwith the suggestion given by [24, 25] that theChiral
magnetic effect either should not change or should decrease
with increasing energy as long as a deconfined state of matter
is formed in a heavy-ion collision.
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