1,672 research outputs found

    Structural synthesis: Precursor and catalyst

    Get PDF
    More than twenty five years have elapsed since it was recognized that a rather general class of structural design optimization tasks could be properly posed as an inequality constrained minimization problem. It is suggested that, independent of primary discipline area, it will be useful to think about: (1) posing design problems in terms of an objective function and inequality constraints; (2) generating design oriented approximate analysis methods (giving special attention to behavior sensitivity analysis); (3) distinguishing between decisions that lead to an analysis model and those that lead to a design model; (4) finding ways to generate a sequence of approximate design optimization problems that capture the essential characteristics of the primary problem, while still having an explicit algebraic form that is matched to one or more of the established optimization algorithms; (5) examining the potential of optimum design sensitivity analysis to facilitate quantitative trade-off studies as well as participation in multilevel design activities. It should be kept in mind that multilevel methods are inherently well suited to a parallel mode of operation in computer terms or to a division of labor between task groups in organizational terms. Based on structural experience with multilevel methods general guidelines are suggested

    Dual methods and approximation concepts in structural synthesis

    Get PDF
    Approximation concepts and dual method algorithms are combined to create a method for minimum weight design of structural systems. Approximation concepts convert the basic mathematical programming statement of the structural synthesis problem into a sequence of explicit primal problems of separable form. These problems are solved by constructing explicit dual functions, which are maximized subject to nonnegativity constraints on the dual variables. It is shown that the joining together of approximation concepts and dual methods can be viewed as a generalized optimality criteria approach. The dual method is successfully extended to deal with pure discrete and mixed continuous-discrete design variable problems. The power of the method presented is illustrated with numerical results for example problems, including a metallic swept wing and a thin delta wing with fiber composite skins

    ACCESS 3. Approximation concepts code for efficient structural synthesis: User's guide

    Get PDF
    A user's guide is presented for ACCESS-3, a research oriented program which combines dual methods and a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and dual algorithms of mathematical programming are applied in the design optimization procedure. This program retains all of the ACCESS-2 capabilities and the data preparation formats are fully compatible. Four distinct optimizer options were added: interior point penalty function method (NEWSUMT); second order primal projection method (PRIMAL2); second order Newton-type dual method (DUAL2); and first order gradient projection-type dual method (DUAL1). A pure discrete and mixed continuous-discrete design variable capability, and zero order approximation of the stress constraints are also included

    ACCESS-2: Approximation Concepts Code for Efficient Structural Synthesis, user's guide

    Get PDF
    A user's guide is presented for the ACCESS-2 computer program. ACCESS-2 is a research oriented program which implements a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and general mathematical programming algorithms are applied in the design optimization procedure

    The structural synthesis of an ablating thermostructural panel

    Get PDF
    Transient thermal analysis and structural analysis for synthesis of ablating thermostructural panels in planetary entry environmen

    ACCESS 1: Approximation Concepts Code for Efficient Structural Synthesis program documentation and user's guide

    Get PDF
    The program documentation and user's guide for the ACCESS-1 computer program is presented. ACCESS-1 is a research oriented program which implements a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and general mathematical programming algorithms are applied in the design optimization procedure. Implementation of the computer program, preparation of input data and basic program structure are described, and three illustrative examples are given

    Conservative buffering of approximate nonlinear constraints

    Get PDF
    In engineering design practice behavior is usually predicted based on some known nominal design. However, when the design is fabricated it will differ from the nominal design because of manufacturing tolerances. In order to generate nominal designs that will still satisfy behavior constraints in the presence of manufacturing tolerances, engineers resort to the use of safety factors, over and above those introduced to account for other uncertainties (e.g., in load conditions, material properties, analysis modeling). The accurate selection of the values of these manufacturing tolerances safety factors is dependent on the capability of the engineer to determine the sensitivity of the critical constraints to changes in the design variables. This process usually leads to overly conservative designs. The task of choosing safety factors is much more difficult in structural synthesis because: (1) it is not known which constraints will be active at the final design, (2) as the design changes during the synthesis process the sensitivities of the constraints with respect to the design variables also change, and (3) the imposition of the safety factors themselves may change the set of critical constraints. These difficulties can be overcome with the approximation concepts approach to structural synthesis by buffering the approximate constraints with quantities that are related to the design variable tolerances and the accurate sensitivities of the constraints with respect to the design variable. Designs generated by this approach tend to be feasible but not overly conservative

    Control Augmented Structural Synthesis

    Get PDF
    A methodology for control augmented structural synthesis is proposed for a class of structures which can be modeled as an assemblage of frame and/or truss elements. It is assumed that both the plant (structure) and the active control system dynamics can be adequately represented with a linear model. The structural sizing variables, active control system feedback gains and nonstructural lumped masses are treated simultaneously as independent design variables. Design constraints are imposed on static and dynamic displacements, static stresses, actuator forces and natural frequencies to ensure acceptable system behavior. Multiple static and dynamic loading conditions are considered. Side constraints imposed on the design variables protect against the generation of unrealizable designs. While the proposed approach is fundamentally more general, here the methodology is developed and demonstrated for the case where: (1) the dynamic loading is harmonic and thus the steady state response is of primary interest; (2) direct output feedback is used for the control system model; and (3) the actuators and sensors are collocated

    Control design variable linking for optimization of structural/control systems

    Get PDF
    A method is presented to integrate the design space of structural/control system optimization problems in the case of linear state feedback control. Conventional structural sizing variables and elements of the feedback gain matrix are both treated as strictly independent design variables in optimization by extending design variable linking concepts to the control gains. Several approximation concepts including new control design variable linking schemes are used to formulate the integrated structural/control optimization problem as a sequence of explicit nonlinear mathematical programming problems. Examples which involve a variety of behavior constraints, including constraints on dynamic stability, damped frequencies, control effort, peak transient displacement, acceleration, and control force limits, are effectively solved by using the method presented

    NEWSUMT: A FORTRAN program for inequality constrained function minimization, users guide

    Get PDF
    A computer program written in FORTRAN subroutine form for the solution of linear and nonlinear constrained and unconstrained function minimization problems is presented. The algorithm is the sequence of unconstrained minimizations using the Newton's method for unconstrained function minimizations. The use of NEWSUMT and the definition of all parameters are described
    corecore