NASA Contractor Report 158949

(NASA-CR-158949)ACCESS-2:APPROXIMATIONN78-32465CONCEPTS CODE FOR EFFICIENT STRUCTURAL
SYNTHESIS, USER'S GUIDE (California Univ.)11116 p HC A06/MF A01CSCL 20KUnclasG3/3931578

A C C E S S - 2 APPROXIMATION CONCEPTS CODE FOR EFFICIENT STRUCTURAL SYNTHESIS - USER'S GUIDE

Hırokazu Mıura and Lucien A. Schmit, Jr.

UNIVERSITY OF CALIFORNIA, LOS ANGELES Los Angeles, CA 90024

NASA Grant NGR 05-007-337 September 1978

Langley Research Center Hampton, Virginia 23665

CONTENTS

																										Page
Lıst	of	Fıgı	ire	s.	•	٠	•	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Vl
List	of	Tabl	les	•	•	٠	٠	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	VII
Summa	iry	• •	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
1.	Int	rođi	uct	lon	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
2.	Pro	gra	n II	mple	eme	ent	at	:10	n	•	•	٠	•	•	•	•	•	•	•	٠	•	•	•	•	•	10
3.	Str	uctu	ıra	l Mo	ode	e 1	ar	nđ	Ir	ıpı	ıt	Da	ıta	Ē	re	epa	ira	ıtı	.or	1.	•	•	•	•	•	12
4.	Res	stri	cti	ons	ar	nđ	ĿJ	נשז	.ta	iti	LOT	ıs	•	•	•	•	•	•	•	•	•	•	•	٠	•	19
Refei	renc	ces.	•	•••	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	21
Fıgur	ces	••	•	• •	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	22
Table	es.	•••	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	25
Apper	ndış	κA.	E	lem	ent	= 1	Lık	ora	ary	7.	•	•	•	•	•	•	•	٠	•	•	•	•		٠	•	27
		в.	I	npu	tΙ	Dat	ta	D∈	esc	r	ıpt	:10	n	•	•	•	•	•	•	•	•	•	•	•	•	48
		с.	E	xamj	ple	es	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	69
		D.	E	xam	ple	э (Jui	tpu	ıt	f	or	25	5 E	Bai	c \$	Spa	ace	9]	Γrι	155	5	•	•	•	•	92

LIST OF FIGURES

Figure	Pag	e
1.	ACCESS-2 Basic Organization	
2.	Overlay Structure of ACCESS-2	
3.	SSP Element Model Example	

LIST OF TABLES

Table		Page
1.	Temporary Files	25
2.	Required Blank Common Size	26

SUMMARY

The ACCESS-2 computer program was developed, based on successful experience with ACCESS-1, to study the performance of approximation concepts when they are applied to problems of practical size and complexity. Each modular process, such as equation solution, eigen-analysis or numerical optimization, is carried out in-core. As a consequence problem size is still limited by main memory capacity, even though solvable problem size has been increased significantly, relative to ACCESS-1. Data transfer among various modules is carried out through sequential data files. Dynamic array allocation techniques are employed extensively to make the best use of available main memory in each module. The introduction of dynamic array allocation leads to a more complicated program structure, however, the benefit of data compaction is an essential ingredient of the quest for efficiency in the context of structural synthesis problems of practical size.

A thermal load analysis capability is added with particular emphasis on the importance of thermal stress/strain considerations in design with fiber composite materials. This provides test cases for problems involving load vectors which depend on design variables. Frequency constraints are installed since they are important in their own right. In addition to being a good measure of overall structural stiffness, natural frequencies represent fundamental information that is essential to the formation of more advanced dynamic constraints (e.g. flutter). Since direct application of ACCESS 1 type approximation (first order Taylor

series expansion with respect to the reciprocals of linked design variables) did not exhibit as good a performance as it did for static constraints, additional features for representing natural frequency constraints as first or second order Taylor series expansions with respect to regular linked variables were implemented.

A constant strain triangular element with arbitrary orthotropic material properties was included in the element library to model laminated fiber composite material membrane structures. Membrane laminates are modeled by stacking elements of this type, with different material axis orientations, together. A thermal shear panel (TSP) element was introduced to take uniform soak temperature effects into account. A special shear panel element is needed because the symmetric shear panel (SSP) element formulation does not permit the neutral surface to change length, hence it cannot represent the thermal expansion associated with a uniform temperature change in the panel. The TSP element was especially devised for representing midplane symmetric wings subject to thermal soak temperature conditions in combination with aerodynamic and inertia loads. The temperature change effect is midplane symmetric and it is treated using the TSP element representation of the wing shear webs. On the other hand the mechanical loads on the wing induces midplane antisymmetric response (bending and twisting) and it is treated using regular SSP elements. The two results are then superimposed. Gradient information for the critical and near critical response

quantities is also computed by superposing independently computed symmetric and antisymmetric contributions.

Optimization algorithms are completely independent of the other parts of the program and the current version includes the NEWSUMT optimizer. Only a few interface program statements would be required to add other optimizer options in parallel with NEWSUMT.

ACCESS -2

Approximation Concepts Code for Efficient Structural Synthesis

User's Guide

1. Introduction

The development of the ACCESS-2 computer program was motivated by the successful demonstration, via the ACCESS-1 program, of the effectiveness of the approximation concepts in automated structural synthesis. The ACCESS-1 program was developed to test the performance of the coordinated use of approximation concepts on problems of relatively small scale, subject to simple static constraints. Furthermore, ACCESS-1 was designed as a base program that would lend itself to experimentation aimed at testing the effectiveness of new ideas and techniques for efficient structural synthesis. Therefore, the program and the data structures of ACCESS-1 were kept simple enough so that anyone with fundamental experience in computer programming would be able to understand the codes and modify them. As reported in Ref. 1 efficiency, in terms of the number of finite element structural analyses needed to obtain near optimal designs, was improved significantly over previously reported capabilities having comparable generality. Furthermore, during the past two years at least four distinct research projects were carried out using ACCESS-1 as a base program and modifying it to test new ideas. Experience has shown that ACCESS-1 has been useful both in its own right and as a research tool designed to promote the use of approximation concepts in automated structural design.

However, many practical design problems are beyond the capacity of ACCESS-1 and consideration of more complicated constraints than those treated in ACCESS-1 is often necessary and desirable. For example, in aeronautical applications, composite materials and thermal loads as well as stability and dynamic response constraints are extremely important. Indeed, there is frequently an even more compelling need for automated design capabilities when these rather complex materials and constraints are involved. The ACCESS-2 computer program has been developed in response to these needs and to build a body of experience that can be used to set effective guidelines for future development of large scale industrial application programs.

The key ideas central to creation of the ACCESS-2 program are similar to those on which ACCESS-1 was built. Finite element analysis techniques and mathematical programming algorithms have been combined using a collection of innovative approximation concepts. Structures with prescribed configuration and given material properties are optimized so that their structural weight is minimized by modifying the sizing of finite elements; i.e. crosssectional areas or thicknesses. (Optimum variation of configuratic and/or topological design features are still the subject of basic research investigations and no conclusive demonstrations of efficient design algorithms are available as yet).

The fundamental structure of the ACCESS-2 program is outlined in Fig. 1. Upon activation, the preprocessor reads and prints out the input data in a readable format. The preprocessor

then computes all the ancillary data that is independent of changes in the design variables and it stores the results in appropriate arrays as well as in temporary external files (see Table 1). When preprocessing is completed successfully, the design process control (DPC) block is activated and it initializes the design iteration process. At the outset the design given in the input data is transferred to the approximate problem generator (APG), and this design is analyzed by the finite element Constraint functions are evaluated using the response method. quantities obtained from the finite element analysis and then the initial set of critical and potentially critical constraints is identified and tagged. Explicit approximate expressions for these tagged constraints are computed using the Taylor series expansion with respect to appropriate intermediate design vari-Reciprocals of independent design variables are used as ables. intermediate variables throughout the program, except for an optional use of the independent design variables themselves when expanding frequency constraints. In ACCESS-2, the objective function is structural weight and it may be expressed exactly and explicitly in terms of the independent design variables or their reciprocals. Thus, the APG block can generate an approximate problem statement of the form:

Mınımıze W(X)

$$X = (x_1, x_2, \dots, x_n)$$

Subject to

 $\tilde{H}_{q}(\vec{x}) \geq 0 \quad q = 1, 2, \dots Q$

where $W(\vec{X})$ and all $\tilde{H}_q(X)$ are explicit analytic functions of \vec{X} . Note that the number of constraints Q for this approximate problem is much smaller than that of the original structural design problem, because only the tagged constraints are included and all other constraints are temporarily ignored during a particular design stage.

The data which define the approximate problem are sent back to DPC and subsequently given to the optimization algorithm block The primary function of OA is to carry out numerical (OA). search process which will improve the design by operating on the current approximate problem statement. Since OA deals with problems that are stated in algebraically explicit form, it is not even aware that these problems are related to structural design. Therefore, any established algorithm for inequality constrained minimization of a function of many variables may be Ideally it would be desirable to select an OA from a used. collection of available options, taking into account the size and special functional characteristics of the current explicit approximate problem statement. However, in the current version of ACCESS-2 only the NEWSUMT optimization algorithm is available. This OA implements a sequence of unconstrained minimizations technique using a modified Newton's method and a quadratic extended penalty function feature to facilitate the unconstrained minimi-One virtue of this interior penalty function type of zations. OA (1.e. NEWSUMT) is that it can usually be controlled so as to provide an improved design that is also feasible with respect to

all of the constraint at each stage in the design process.

After carrying out a numerical search with the approximate problem, the optimization algorithm (OA) block proposes an improved design \vec{X}' to DPC. This step completes one stage of the design iteration procedure.

In summary, one stage of iteration includes one finite element structural analysis, one constraint deletion process, one sensitivity evaluation for retained constraints, and one optimization of an approximate problem. Since the final design is subject to a detailed finite element analysis, the total number of finite element analyses equals the number of iteration stages plus one, which will be typically 10. The iterative design process is terminated when one of the specified convergence criteria is satisfied.

Strictly speaking each new design \vec{X}' proposed by the OA block to DPC is a better design than the original design \vec{X} only with respect to the approximate problem statement. When the structural design corresponding to \vec{X}' is analyzed by means of the finite element method, it may turn out that some constraints are violated. This situation may occur when the design changes in one stage exceed the applicable range of the approximate problem statement. It should be noted that the NEWSUMT optimizer is capable of locating feasible designs starting from an infeasible design. However, violation of constraints in the intermediate stages usually has a deleterious effect on the convergence characteristics and it is also inconvenient if

constraint violations are found at the final design. Constraint violation can usually be controlled or eliminated by appropriate use of the maximum step size parameter STEPMX and its dynamic modification feature via parameters STEPMXmultiplier and STEPMX-lower limit (see Appendix B).

All routines are written in standard FORTRAN IV language and they have been tested on: (a) the IBM 360/91 using the FORTRAN-H compiler at UCLA; and (b) the CDC 6600 at the NASA Langley Research Center. Implementation on other types of computers will be straightforward provided those computers have the required main memory capacity. Except for the blank COMMON arrays, 380_{10} K and 280_{10} K bytes are required on IBM 360/91 without and with program overlay, respectively. On a CDC 6600, the corresponding basic memory requirement is 100_{9} K words with overlay.

2. Program Implementation

ACCESS-2 computer program may be executed as a stand alone program. It consists of approximately 8500 FORTRAN statements. The program supplied upon request is a version operational either on IBM 360/370 or CDC 6600/7600 systems. Since it contains no machine dependent statements, it can be made operational on various computers, provided enough main memory capacity and auxiliary data storage support are available.

Auxiliary storage files are required as shown in Table 1. Files 10, 11, 12, 13, 14 and 15 are required for all problems. File 16 is required only when type 4 elements (TSP) are used in the structural model. Files 18, 19, 20, 21 and 22 are required only when second order expansions of frequency constraints are specified.

The required size of blank common is very problem dependent: i.e. it depends on the structural analysis model (number of nodes, elements and load conditions), the number of independent design variables, and the constraint types included. For certain problems, it also depends on the initial design. Hence, it is rather difficult to give explicit formulas which estimate the size of blank common requirements. Table 2 gives actual blank common array size requirements for several example problems.

Overlay or segmentation of the program can be designed easily by referring to Fig. 2. The simple 3 level overlay is adequate to solve most of the meaningful problems. If an operating system allows more flexible overlay structure, it is pos-

sible to decrease the core requirement further. However, the net gain acquired by the elaborate overlay may not be significant, since most of the core is used for data and not for instructions.

3. Structural Model and Input Data Preparation

It is assumed that the reader is familiar with elastic structural analysis via the finite element displacement method, as well as with associated structural modelling techniques and typical data preparation procedures. Sufficient information for preparing the input data card images is given in Appendix B, therefore the explanations given in this section are limited to topics which require somewhat detailed technical discussion in order to avoid possible misunderstandings.

3.1 System of Units

Input data of the ACCESS-2 computer program may be prepared in any system of units as long as they are consistent. For example, if it is decided that the units for length and force are to be centimeters and Newtons, respectively, then the corresponding units for pressure load or allowable stress must be N/cm². Note that the material constant specification calls for the specific weight of the material, not its mass density. To be consistent lumped nodal mass should be given using weight rather than mass units. Example problems given in Appendix C are presented both in the International System (IS) of Units and in the U.S. Customary (U.S.) units. Computer input data for examples are shown using numerical values associated with the U.S. units, simply because all the examples were originally presented in the literature using U.S. units.

3.2 Node Numbering Scheme for the Effective Use of Memory The system stiffness and the mass matrices are stored in a

vector form within the skyline of the non-zero elements, i.e. there are no operations or no storage allocations with elements that remain zero during the solution. This scheme allows somewhat more flexible node numbering arrangement than the ordinary band equation solver. It is better, however, to follow the same guidelines in preparing data as for a banded matrix solution scheme; i.e., differences among node numbers associated with an element must be kept as small as possible for all elements. 3.3 Symmetric Wing Model

If the webs of a midplane symmetric wing are modelled with SSP elements, only the upper (or lower) half of the wing is modelled. Assuming that the X-Y reference plane is the plane of symmetry, the X and Y displacement components and loading components are then anti-symmetric. Displacements and loadings in the Z direction are identical for both sides of the X-Y plane. For example, if a cantilever beam such as that shown in Fig. 3(a) is to be modelled using two SSP elements, then the simplified model should be that shown in Fig. 3(b). Note that only half of the load P need be applied to the node 3, since the other half is implicitly applied to the conjugate node 3' (which does not exist explicitly in the model). The SSP elements are always vertical to the X-Y plane of symmetry.

The assumed displacement function for SSP elements cannot accommodate uniform thermal expansion of each SSP element. If specified midplane symmetric temperature changes are specified for a midplane symmetric structural model, in which the vertical

webs are represented by SSP elements, ACCESS 2 branches and makes a separate calculation which adds in the midplane symmetric temperature change effects. This is accomplished by assembling equilibrium equations for the midplane symmetric structure with all of the SSP elements replaced by TSP elements while only considering midplane symmetric temperature change loading. These equilibrium equations are solved for displacements $\dot{\vec{u}}_{+h}$ due only to midplane symmetric temperature changes. These thermally induced midplane symmetric displacements are superimposed on the previously computed midplane antisymmetric displacement state due to mechanical loads only. Treating the symmetric and antisymmetric contributions separately reduces the number of displacement degrees of freedom that need to be considered in each of the two analyses and for thin wings it also tends to improve the accuracy of the analysis by avoiding the poor conditioning often associated with simultaneous treatment of bending and membrane response. The strain state is computed based on the total displacement, and the stress state is computed by transforming the strain state using the stress-strain relationships.

3.4 Design Variable Linking

The general concept of design variable linking is discussed in Sec. 2.3.1 of Ref. 1. In the ACCESS-2 computer program, if the sizes of some group of finite elements of the same type are controlled by a single design variable, these elements are said to belong to the same design variable linking group. The sizes of elements in a design variable linking group are modified in

proportion to the initial sizes given in the input data.

Design variable linking groups are also used to define "regions" for the regionalization of stress constraints. The general idea of regionalization is described in Sec. 2.4.1 of Ref. 1. Elements which belong to the same design variable linking group form a region and only one stress constraint per load condition (the most critical) is considered for each group in any stage of the iterative design procedure. Selection of the critical stress constraints within a region is not rigidly fixed, but dynamically updated at the beginning of each stage. If the location of the critical stress constraints shifts frequently within a region from stage to stage the iteration process may be unstable, although this type of instability was not observed in solving any of the problems given in Ref. 1. However, if the user desires to remove the regionalization of stress constraints, it is only necessary to specify IGLINK = -200.

3.5 Failure Criteria for CSTOR elements

The CSTOR element is implemented to model structures made with orthotropic materials including multi-layered fiber composite laminates. While strength failure criteria for isotropic metal alloy materials are imposed using the von Mises combined effective stress, strength failure criteria for CSTOR elements are selected from 3 available options.

They are:

A. Maximum strain criteria

$$\overline{\tilde{\varepsilon}_{L}^{c}} \leq \varepsilon_{L} - \alpha_{L} \Delta T \leq \overline{\tilde{\varepsilon}_{L}^{t}}$$

$$\overline{\tilde{\varepsilon}_{T}^{c}} \leq \varepsilon_{T} - \alpha_{T} \Delta T \leq \overline{\tilde{\varepsilon}_{T}^{t}}$$

$$|\gamma_{LT}| \leq \overline{\gamma}_{LT}$$

B. Stress interaction formulas

$$\left(\frac{\sigma_{\mathrm{L}}}{F_{\mathrm{L}}}\right)^2 \leq 1$$

$$\left(\frac{\sigma_{\mathrm{T}}}{\mathrm{F}_{\mathrm{T}}}\right)^{2} + \left(\frac{\tau_{\mathrm{LT}}}{\mathrm{F}_{\mathrm{LT}}}\right)^{2} \leq 1$$

C. Tsal-Azzi Criterion

$$\left(\frac{\sigma_{\mathbf{L}}}{\overline{\mathbf{F}}_{\mathbf{L}}}\right)^{2} - \left(\frac{\sigma_{\mathbf{L}}\sigma_{\mathbf{T}}}{\overline{\mathbf{F}}_{\mathbf{L}}^{2}}\right) + \left(\frac{\sigma_{\mathbf{T}}}{\overline{\mathbf{F}}_{\mathbf{T}}}\right)^{2} + \left(\frac{\sigma_{\mathbf{LT}}}{\overline{\mathbf{F}}_{\mathbf{LT}}}\right)^{2} \leq 1$$

where

- $\bar{\epsilon}_{L}^{t}$: allowable longitudinal tensile strain
- $\overline{\gamma}_{T,m}$: allowable shear strain
- F_{τ}, F_{π} : allowable longitudinal and transverse stresses
- $F_{T,m}$: allowable shear stress
- v_{TL} : Poisson's ratio relating to contraction in the longitudinal direction due to extension in the in-plane transverse direction
- v_{LT} : Poisson's ratio relating to contraction in the in-plane transverse direction due to extension in the longitudinal direction

Among the three alternative strength criteria, the maximum strain criterion is the most conservative while the stress interaction formulas are usually the least conservative.

3.6 Computation of Constraints

All constraints, except the side constraints, are normalized so that potentially critical constraint functions in the feasible region assume values between 0.0 and 1.0. Constraint functions are defined as follows:

Side Constraints

$$D^{(U)}/D - 1.0 \ge 0$$

$$1.0 - D^{(L)}/D \ge 0$$

Displacement Constraints

$$(\delta^{(U)} - \delta) / \delta^{(U)} \ge 0$$
$$(\delta - \delta^{(L)}) / \delta^{(L)} \ge 0$$

Slope (Relative Displacement) Constraints

Slope

$$\frac{s^{(U)} - (\delta_2 - \delta_1)/d_p}{s^{(U)}} \ge 0$$

Relative Displacement

$$\frac{r^{(U)} - (\delta_2 - \delta_1)}{r^{(U)}} \ge 0$$

where d_p is the projection of the distance between the two points on a plane normal to the displacement components δ_1 and δ_2 .

Stress (Strain) Constraints

$$\frac{\sigma^{(U)} - \sigma}{\sigma^{(U)}} \ge 0$$

$$\frac{\sigma - \sigma^{(L)}}{\sigma^{(L)}} \ge 0$$

For strain constraints, see 3.5.

Frequency Constraints

$$\frac{\omega^{(U)} - \omega^2}{\omega^{(U)}} \ge 0$$

$$\frac{\omega^2 - \omega^{(L)}}{\omega^{(L)}} \ge 0$$

.

4. Restrictions and Limitations

The amount of main memory storage required for solution of a particular problem depends upon many factors, including the number of nodes, the number of elements, the number of design variables, the element types used, the kinds of constraints imposed, and even the initial design employed etc. For static problems, it is necessary to retain two system stiffness matrices and the load vectors in core. For dynamic problems, three system matrices must be retained in core. If a problem involves dynamic constraints and thermal shear panel elements, four system matrices must be in core simultaneously. Also a complete approximate problem statement (all retained constraint values and all the corresponding derivative components) must be in core for the OA block. It is difficult to estimate the array size required for a system stiffness matrix in advance. Only the nonzero skyline of an upper half matrix is stored, hence the memory requirement depends on the node numbering scheme. For medium size problems (300-600 DOF), the density of nonzero elements in the matrix is usually 20-50% and a first approximation can be made by estimating the density based on observation of the finite element model. The main memory storage required for the integer portion of the blank COMMON is usually less than 10,000 words, but the real variable portion is very dependent on the nature of the problem. For problems in which the number of constraints retained tends to be larger and in which there are many independent design variables (e.g. structures involving laminated fiber composite skins) the

constraint derivative array size [i.e. (Number of Design Variables) x (Number of Constraints Retained)] may limit the problem size, since this large array must be in core in addition to the instructions and local variables.

When first order approximations are used frequency constraints can be imposed on any subset of frequencies within the lowest NFREQ frequencies. If second order approximations are employed all frequencies in the lowest NFREQ frequencies must be bounded.

Capabilities for aeroelastic constraints are not available in this version, therefore NMODE must be zero and the flight condition specification flags must all be zero.

All input data are read in with fixed format, hence column positions of the punched data are of critical importance. Especially note that all blank columns are regarded as zeroes for numerical inputs.

REFERENCES

- Schmit, L.A. and H. Miura, "Approximation Concepts for Efficient Structural Synthesis," NASA CR-2552, March 1976.
- 2. Muura, H. and Schmit, L.A., "ACCESS 1 Program Documentation and User's Guide," NASA CR-144905, 1976.
- Przemieniecki, J.S., "Theory of Matrix Structural Analysis," McGraw Hill, New York, 1968.

Figure 1. ACCESS 2 Basic Organization.

ORIGINAL PAGE IS OF POOR QUALITY

22 .

Fig. 2. Overlay Structure of ACCESS-2

Fig.3 SSP Element Model Example

ORIGINAL PAGE IS OF POOR QUALITY

Table 1. Temporary Files

File Name	Contents
10	Stiffness matrix components associated with unit values of independent design variables and load vector components which are independen of design variables
11	Mass matrix components associated with unit values of independent design variables
12	Load vector components due to thermal loads and dependent on independent design variables
13	Load vector components due to inertia loads and dependent on independent design variables
14	Constraint gradients
15	Input data and a part of preprocessor output
16	Thermal shear panel stiffness matrix components Used only when IETP(6) $\neq 0$
17	Not used
18	Eigenvector sensitivity vectors, if computed
19	Mass matrix post-multiplied by eigenvectors. Required only when second order expansion of frequency constraints is used.
20	Original system stiffness and mass matrices. Required only when second order expansion of frequency constraints is used.
21	Modified $[K-\lambda_1M]$ in the eigenvector sensitivity computation. Stored in decomposed form.
22	$\frac{\partial K}{\partial \alpha_{b}} - \lambda_{1} \frac{\partial M}{\partial \alpha_{b}} \bar{X}_{1}$, ((1=1, NELG), b=1, B)
	Required only when second order expansion of frequency constraints is used

	Problems	Elements	Total No. of Elements	Free Displ. d.o.f.s	No. of Design Variables	Total No. of Constraints	Requ: Real Array	red Integer Array	
	Wing Carry-Through Truss Model (static)	TRUSS	63	42	, 63	319	11415	1896	
1	Delta Wıng (Metal) (Statıc & Dynamıc)	CST SSP	63 70	105	28	164	7400	2033	
26	Delta Wing-Composite (Static & Dynamic)	CSTOR SSP	252 70	105	60	2725	12750	6747	
	Delta Wing-Composite (Static, thermal and Dynamic)	CSTOR SSP TSP	252 70 70	105	60	2725	16960	8264	
	Elevon-Composite (Static, thermal and Dynamic)	TRUSS CSTOR SSP TSP	45 192 45 45	109	68	3354	47334	10680	

Table 2. Required Blank Common Size

APPENDIX A

ELEMENT LIBRARY

Currently, 6 element types are available: they are TRUSS, CSTIS, CSTOR, SSP, PSP and TSP. Basic characteristics of these elements are given in the sequel.

 Type 1 - TRUSS : Pin jointed bar element of uniform cross section

Strain-Displacement Relation (local coordinate)

$$\varepsilon = \frac{1}{\mathbf{L}} \begin{bmatrix} -1 & 1 \end{bmatrix} \begin{cases} \tilde{\mathbf{u}}_{\mathbf{p}} \\ \tilde{\mathbf{u}}_{\mathbf{Q}} \end{cases}$$
 (A-1)

ORIGINAL PAGE IS OF POOR QUALITY

Stress Strain Relation (local coordinate)

 $\sigma = E \varepsilon - E\alpha \Delta T \tag{A-2}$

where α : thermal expansion coefficient

 ΔT : average temperature change

Force Displacement Relation (local coordinate)

$$\frac{\mathrm{EA}}{\mathrm{L}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{pmatrix} \tilde{u}_{\mathrm{P}} \\ \tilde{u}_{\mathrm{Q}} \end{pmatrix} - \mathrm{E}\alpha\Delta\mathrm{TA} \begin{pmatrix} -1 \\ 1 \end{pmatrix} - \begin{pmatrix} \tilde{f}_{\mathrm{P}} \\ \tilde{f}_{\mathrm{Q}} \end{pmatrix} = 0 \qquad (A-3)$$

where F_p , F_q are externally applied force at P and Q nodes, respectively.

Force Displacement Relation (reference coordinates)

$$\frac{EA}{L} \begin{bmatrix} \iota^{2} & \iota m & \iota n & -\iota^{2} & -\iota m & -\iota n \\ m^{2} & mn & -\iota m & -m^{2} & -mn \\ n^{2} & -\iota n & -mn & -n^{2} \\ & \iota^{2} & \iota m & \iota n \\ symm & & n^{2} & mn \\ & & & & n^{2} & mn \\ & & & & & n^{2} \end{bmatrix} \begin{bmatrix} U_{p} \\ V_{p} \\ W_{p} \\ U_{Q} \\ V_{Q} \\ W_{Q} \\ W_{Q} \end{bmatrix}$$

Consistent Mass Matrix (reference coordinates)

$$[M] = \frac{\rho AL}{6} \begin{bmatrix} 2 & 0 & 0 & 1 & 0 & 0 \\ & 2 & 0 & 0 & 1 & 0 \\ & & 2 & 0 & 0 & 1 \\ & & & 2 & 0 & 0 \\ & & & & 2 & 0 \\ & & & & & & 2 \end{bmatrix}$$

(A-5)

where ρ : density

2. Type 2 - CSTIS: Constant strain triangular membrane element with uniform thickness and isotropic material

Strain-Displacement Relation (local coordinate)

$$\begin{pmatrix} \varepsilon_{\mathbf{x}} \\ \varepsilon_{\mathbf{y}} \\ \gamma_{\mathbf{x}\mathbf{y}} \end{pmatrix} = \frac{1}{bh} \begin{bmatrix} (s-b) & 0 & -s & 0 & b & 0 \\ 0 & -h & 0 & h & 0 & 0 \\ -h & (s-b) & h & -s & 0 & b \end{bmatrix} \begin{pmatrix} \tilde{\mathbf{u}}_{\mathbf{p}} \\ \tilde{\mathbf{v}}_{\mathbf{p}} \\ \tilde{\mathbf{w}}_{\mathbf{Q}} \\ \tilde{\mathbf{v}}_{\mathbf{Q}} \\ \tilde{\mathbf{v}}_{\mathbf{Q}} \\ \tilde{\mathbf{w}}_{\mathbf{Q}} \end{pmatrix}$$
 (A-6)

(")

ŧ

Stress-Strain Relation (local coordinate)

$$\begin{pmatrix} \sigma_{\mathbf{x}} \\ \sigma_{\mathbf{y}} \\ \gamma_{\mathbf{x}\mathbf{y}} \end{pmatrix} = \frac{\mathbf{E}}{1 - \nu^{2}} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1 - \nu}{2} \end{bmatrix} \begin{pmatrix} \varepsilon_{\mathbf{x}} \\ \varepsilon_{\mathbf{y}} \\ \gamma_{\mathbf{x}\mathbf{y}} \end{pmatrix} - \frac{\mathbf{E}\alpha\Delta\mathbf{T}}{1 - \nu} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$
 (A-7)

Stress-Displacement Relation (local coordinate)

Local-Reference Displacement Relation

$$\begin{cases} \tilde{\mathbf{u}}_{\mathrm{P}} \\ \tilde{\mathbf{v}}_{\mathrm{P}} \\ \tilde{\mathbf{v}}_{\mathrm{Q}} \\ \tilde{\mathbf{u}}_{\mathrm{Q}} \\ \tilde{\mathbf{u}}_{\mathrm{Q}} \\ \tilde{\mathbf{v}}_{\mathrm{Q}} \\ \tilde{\mathbf{u}}_{\mathrm{R}} \\ \tilde{\mathbf{v}}_{\mathrm{R}} \end{cases} = \begin{cases} \tilde{\lambda}_{\mathrm{x}}^{\mathrm{T}} \cdot \tilde{\mathbf{v}}_{\mathrm{P}} \\ \tilde{\lambda}_{\mathrm{y}}^{\mathrm{T}} \cdot \tilde{\mathbf{v}}_{\mathrm{Q}} \\ \tilde{\lambda}_{\mathrm{x}}^{\mathrm{T}} \cdot \tilde{\mathbf{v}}_{\mathrm{Q}} \\ \tilde{\lambda}_{\mathrm{y}}^{\mathrm{T}} \cdot \tilde{\mathbf{v}}_{\mathrm{Q}} \\ \tilde{\lambda}_{\mathrm{x}}^{\mathrm{T}} \cdot \tilde{\mathbf{v}}_{\mathrm{R}} \\ \tilde{\lambda}_{\mathrm{y}}^{\mathrm{T}} \cdot \tilde{\mathbf{v}}_{\mathrm{R}} \\ \tilde{\lambda}_{\mathrm{y}}^{\mathrm{T}} \cdot \tilde{\mathbf{v}}_{\mathrm{R}} \end{cases}$$
 or $\tilde{\mathbf{u}} = [\mathrm{T}]\tilde{\mathbf{v}}$ (A-9)

where $\dot{\lambda}_{x}$: unit vector parallel to the x-axis $\dot{\lambda}_{y}$: unit vector parallel to the y-axis U_{p}, U_{Q}, U_{R} : displacement vectors of P,Q,R nodes.

$$[T] = \begin{cases} \begin{pmatrix} k_{x} & m_{x} & n_{x} & & & & & & \\ & & & 0 & & 0 & & \\ k_{y} & m_{y} & n_{y} & & & & & \\ & & & k_{x} & m_{x} & n_{x} & & & \\ & & & & k_{x} & m_{x} & n_{x} & & \\ & & & & & k_{y} & m_{y} & n_{y} & \\ & & & & & & & k_{x} & m_{x} & n_{x} \\ & & & & & & & & k_{y} & m_{y} & n_{y} \end{cases}$$
(A-10)

Stiffness Matrix (local coordinate system)

$$K = K_n + K_s$$
 (A-11)

where

$$\kappa_{n} = \frac{Et}{4A(1-v^{2})} \left\{ \begin{array}{cccc} (s-b)^{2} - v(s-b)h - (s-b)s & v(s-b)h & (s-b)b & 0 \\ h^{2} & vhs & -h^{2} & -vhb & 0 \\ s^{2} & -vhs & -bs & 0 \\ symm. & h^{2} & vbh & 0 \\ b^{2} & 0 \\ 0 \end{array} \right.$$
$$\kappa_{s} = \frac{Et}{8A(1+\nu)} \left(\begin{array}{cccc} h^{2} & -(s-b)h & -h^{2} & hs & 0 & -bh \\ & (s-b)^{2} & (s-b)h & -(s-b)s & 0 & (s-b)b \\ & & h^{2} & -hs & 0 & bh \\ & & s^{2} & 0 & -bs \\ & & & 0 & 0 \\ & & & & b^{2} \end{array} \right)$$

Force-Displacement Relation (local coordinates)

.

$$K \tilde{u} + \frac{E\alpha\Delta Tt}{2(1-\nu)} \begin{cases} b-s \\ h \\ s \\ -h \\ -b \\ 0 \end{cases} = \tilde{f} \qquad (A-12)$$

(A-13)

Consistent Mass Matrix

$$\begin{bmatrix} M \end{bmatrix} = \frac{\rho A t}{12} \begin{bmatrix} 2 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 & 0 & 0 \\ 2 & 0 & 0 & 1 & 0 & 0 \\ Symm. & 2 & 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 \\ 2 & 0$$

where ρ : density

3. Type 3 - CSTOR: Constant strain triangular membrane element with uniform thickness of an orthotropic material

Transperse axis b e_T Longitudinal axıŝ S ê_L h 0 \mathbf{Z} Ρ е_х ñ _ Y X Fig. A-3 CSTOR Element

Strain-Displacement Relation (local coordinate)

$$\begin{pmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \gamma_{xy} \end{pmatrix} = \frac{1}{bh} \begin{bmatrix} (s-b) & 0 & -s & 0 & b & 0 \\ 0 & -h & 0 & h & 0 & o \\ -h & (s-b) & h & -s & 0 & b \end{bmatrix} \begin{cases} \tilde{u}_{p} \\ \tilde{v}_{p} \\ \tilde{u}_{Q} \\ \tilde{v}_{Q} \\ \tilde{v}_{Q} \\ \tilde{v}_{R} \\ \tilde{v}_{R} \end{bmatrix}$$
 (A-14)

= [B] ũ

.

Stress-Strain Relation (material axis)

$$\begin{pmatrix} \sigma_{LL} \\ \sigma_{TT} \\ \gamma_{LT} \end{pmatrix} = \begin{pmatrix} \frac{E_{L}}{1 - v_{LT} v_{TL}} & \frac{v_{TL} E_{L}}{1 - v_{LT} v_{TL}} & 0 \\ \frac{v_{LT} E_{T}}{1 - v_{LT} v_{TL}} & \frac{E_{T}}{1 - v_{LT} v_{TL}} & 0 \\ 0 & 0 & G_{LT} \end{pmatrix} \begin{pmatrix} \varepsilon_{LL} \\ \varepsilon_{TT} \\ \gamma_{LT} \end{pmatrix} - \Delta T \begin{pmatrix} \frac{E_{L} (\alpha_{L}^{+} v_{TL} \alpha_{T})}{1 - v_{LT} v_{TL}} \\ \frac{E_{T} (\alpha_{T}^{+} v_{LT} \alpha_{L})}{1 - v_{LT} v_{TL}} \\ 0 & 0 & G_{LT} \end{pmatrix} \begin{pmatrix} \varepsilon_{LL} \\ \varepsilon_{TT} \\ \gamma_{LT} \end{pmatrix} - \Delta T \begin{pmatrix} \frac{E_{L} (\alpha_{L}^{+} v_{TL} \alpha_{T})}{1 - v_{LT} v_{TL}} \\ 0 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \end{pmatrix}$$
 (A-15)

Strain Transformation Law (material-local)

$$\begin{pmatrix} \varepsilon_{\mathrm{LL}} \\ \varepsilon_{\mathrm{TT}} \\ \gamma_{\mathrm{LT}} \end{pmatrix} = \begin{pmatrix} \varkappa_{\mathrm{Lx}}^{2} & \varkappa_{\mathrm{Ly}}^{2} & \varkappa_{\mathrm{Lx}}^{2} & \mathrm{Ly} \\ \varkappa_{\mathrm{Tx}}^{2} & \chi_{\mathrm{Ty}}^{2} & \chi_{\mathrm{Tx}}^{2} & \mathrm{Ly} \\ \varkappa_{\mathrm{Tx}}^{2} & \chi_{\mathrm{Ty}}^{2} & \chi_{\mathrm{Tx}}^{2} & \mathrm{Ly} \\ 2 \varkappa_{\mathrm{Lx}}^{2} & \chi_{\mathrm{Ly}}^{2} & \chi_{\mathrm{Ly}}^{2} & \mathrm{Ly}^{2} & \mathrm{Lx} \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$$

where
$$\ell_{Lx} = \vec{e}_{L}^{T} \cdot \vec{e}_{x} = \cos\theta$$
, $\ell_{Tx} = \vec{e}_{T}^{T} \cdot \vec{e}_{x} = -\sin\theta$
 $\ell_{Ly} = \vec{e}_{L}^{T} \cdot \vec{e}_{y} = \sin\theta$, $\ell_{Ty} = \vec{e}_{T}^{T} \cdot \vec{e}_{y} = \cos\theta$

Note: the direction of \vec{e}_2 is chosen so that $(\vec{e}_1 \times \vec{e}_2) \cdot (\vec{e}_X \times \vec{e}_y) > 0.$

Stress-Displacement Relation

.

$$\begin{cases} \sigma_{LL} \\ \sigma_{TT} \\ \gamma_{LT} \end{cases} = [D][T][B] \tilde{u} - \Delta T \cdot \vec{h}$$
 (A-17)

Local-Reference Displacement Relation

same as type 2

ĸ

<u>Stiffness Matrix</u> (local coordinate)

$$\begin{split} \kappa &= \kappa_{n} + \kappa_{s} & (A-18) \\ &= \frac{t}{2bh(1 - \nu_{LT}\nu_{TL})} \begin{pmatrix} C_{1}(s-b)^{2} - C_{2}(s-b)h - C_{L}(s-b)s \ C_{2}(s-b)h \ C_{1}(s-b)b \ 0 \\ C_{2}h^{2} \ C_{2}hs \ -C_{3}h^{2} \ -C_{2}bh \ 0 \\ C_{1}s^{2} \ -C_{2}hs \ -C_{1}bs \ 0 \\ Symm \ C_{2}h^{2} \ C_{2}hb \ 0 \\ C_{1}b^{2} \ 0 \\ C_{1}b^{2$$

37

$$\begin{cases} (s-b)^{2} D_{1} & symm. \\ + 2h(s-b) D_{2}+h^{2} D_{3} & h^{2} D_{1} - 2h(s-b) D_{2} \\ + (b^{2}-(s-b)^{2}] D_{2}-h(s-b) D_{3} & + (s-b)^{2} D_{3} \\ - s(s-b) D_{1} & -hs D_{1} [(s-b) s-h^{2}] D_{2} & s^{2} D_{1}+2hs D_{2}+h^{2} D_{3} \\ - (2s-b) h D_{2}-h^{2} D_{3} & + (s-b) h D_{3} & s^{2} D_{1}+2hs D_{2}+h^{2} D_{3} \\ - h(s-b) D_{1} & -h^{2} D_{1}+h(2s-b) D_{2} & hs D_{1}+(h^{2}-s^{2}) D^{2} & h^{2} D_{1}-2hs D_{2} \\ + [(s-b) s-h^{2}] D_{2}+sh D_{3} & -s(s-b) D_{3} & -hs D_{3} & +s^{2} D_{3} \\ \hline b(s-b) D_{1}+bh D_{2} & bh D_{1}-b(s-b) D_{2} & -bs D_{1}-bh D_{2} & -bh D_{1}+bs D_{2} & b^{2} D_{1} \\ \hline b(s-b) D_{2}-bh D_{3} & -bh D_{2}+b(s-b) D_{3} & bs D_{2}+bh D_{3} & bh D_{2}-bs D_{3} & -b^{2} D_{2} & b^{2} D_{3} \\ \hline \end{cases}$$

.

where
$$D_1 = 4\rho^2 \mu^2$$

 $D_2 = 2\rho\mu(\rho^2 - \mu^2)$
 $D_3 = (\rho^2 - \mu^2)^2$

Equilibrium Equation (local coordinate)

$$\begin{split} \mathbf{K} \ \tilde{\mathbf{u}} + \tilde{\mathbf{h}} &= \tilde{\mathbf{f}} \\ \vec{\mathbf{h}} &= \mathbf{t} \ \Delta \mathbf{T} \ \begin{cases} -(\mathbf{b} - \mathbf{s}) (\rho^2 \mathbf{h}_1 + \mu^2 \mathbf{h}_2) + 2\mathbf{h}\rho\mu (\mathbf{h}_1 - \mathbf{h}_2) \\ -\mathbf{h} (\mu^2 \mathbf{h}_1 + \rho^2 \mathbf{h}_2) + 2(\mathbf{b} - \mathbf{s})\rho\mu (\mathbf{h}_1 - \mathbf{h}_2) \\ -\mathbf{s} (\rho^2 \mathbf{h}_1 + \mu^2 \mathbf{h}_2) - 2\mathbf{h}\rho\mu (\mathbf{h}_1 - \mathbf{h}_2) \\ \mathbf{h} (\mu^2 \mathbf{h}_1 + \rho^2 \mathbf{h}_2) + 2\mathbf{s}\rho\mu (\mathbf{h}_1 - \mathbf{h}_2) \\ \mathbf{b} (\rho^2 \mathbf{h}_1 + \mu^2 \mathbf{h}_2) \\ -2\mathbf{b}\rho\mu (\mathbf{h}_1 - \mathbf{h}_2) \end{cases} \end{split}$$
 (A-21)

where

$$h_{1} = -\frac{E_{L}(\alpha_{L} + \nu_{TL}\alpha_{T})}{1 - \nu_{LT}\nu_{TL}}$$

$$h_{2} = -\frac{E_{T}(\alpha_{T} + \nu_{LT}\alpha_{L})}{1 - \nu_{LT}\nu_{TL}}$$

Consistent Mass Matrix (reference coordinate)

same as type 2

.

4. Type 4 - SSP: Symmetric shear panel element with uniform thickness and isotropic material

This is a special element used to model relatively thin symmetric structures such as idealized supersonic lifting surfaces. Theoretical discussion is given in Ref. 1. It is assumed that this element models the upper (or lower but not both) half of the symmetric structure and the element plane of symmetry coincides with the X-Y plane. It is further assumed that all SSP elements are placed vertically with respect to the X-Y reference coordinate plane.

Fig. A-4 SSP Element

Note:

- 1. There are only two nodes per element.
- 2. The line of intersection with the XY plane does not move in the XY plane. It can only move vertically.

- 3. If the heights PP' and QQ' are different, the average (PP' + QQ')/2 is considered as the height of the element, i.e. b.
- 4. No thermal load can be considered in this element

Strain Displacement Relation (local coordinate)

$$\begin{pmatrix} \varepsilon_{\mathbf{x}} \\ \varepsilon_{\mathbf{y}} \\ \gamma_{\mathbf{x}\mathbf{y}} \end{pmatrix} = \begin{bmatrix} -\frac{2\eta}{a} & 0 & \frac{2\eta}{a} & 0 \\ \frac{2\nu\eta}{a} & 0 & \frac{2\nu\eta}{a} & 0 \\ \frac{1}{b} & -\frac{1}{a} & \frac{1}{b} & \frac{1}{a} \end{bmatrix} \begin{pmatrix} \widetilde{\mathbf{u}}_{\mathbf{p}} \\ \widetilde{\mathbf{v}}_{\mathbf{p}} \\ \widetilde{\mathbf{v}}_{\mathbf{Q}} \\ \widetilde{\mathbf{v}}_{\mathbf{Q}} \end{pmatrix}$$
(A-22)

 $\tilde{\epsilon} = [B]u$ wherein $\eta = \tilde{Y}/b$

Stress-Strain Relation (local coordinate)

$$\begin{pmatrix} \sigma_{\mathbf{x}} \\ \sigma_{\mathbf{y}} \\ \tau_{\mathbf{x}\mathbf{y}} \end{pmatrix} = \frac{E}{1-\nu^{2}} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1-\nu}{2} \end{bmatrix} \begin{pmatrix} \varepsilon_{\mathbf{x}} \\ \varepsilon_{\mathbf{y}} \\ \gamma_{\mathbf{x}\mathbf{y}} \end{pmatrix}$$
(A-23)
ORIGINAL PAGE IS
OFF POOR QUALITY

Stress Displacement Relation (local coordinate)

$$\begin{pmatrix} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{pmatrix} = E \left\{ \begin{array}{ccc} -\frac{2\eta}{a} & 0 & \frac{2\eta}{a} & 0 \\ 0 & 0 & 0 & 0 \\ \frac{1}{2(1+\nu)b} & \frac{1}{2(1+\nu)a} & \frac{1}{2(1+\nu)b} & \frac{1}{2(1+\nu)a} \\ \end{array} \right\} \begin{pmatrix} \tilde{u}_{p} \\ \tilde{v}_{p} \\ \tilde{u}_{Q} \\ \tilde{v}_{Q} \\ \tilde{v}_{Q} \\ \tilde{v}_{Q} \\ \end{array} \right\}$$
(A-24)

OFF POOPR OF ALITY

Local to Reference Displacement Transformation

...

$$\begin{pmatrix} \tilde{u}_{p} \\ \tilde{v}_{p} \\ \tilde{v}_{p} \\ \tilde{v}_{Q} \\ \tilde{v}_{Q} \end{pmatrix} = \begin{pmatrix} k_{x} & m_{x} & 0 & & & \\ 0 & 0 & \pm 1 * & & & \\ 0 & & k_{x} & m_{x} & 0 \\ 0 & & k_{x} & m_{x} & 0 \\ 0 & 0 & 0 & \pm 1 * \end{pmatrix} \begin{pmatrix} U_{p} \\ V_{p} \\ W_{p} \\ W_{Q} \\ W_{Q} \\ W_{Q} \\ W_{Q} \end{pmatrix}$$
 (A-25)

*(-) sign if $Z_p < 0$ and $Z_Q < 0$

where l_x and m_x are components of a unit vector \vec{e}_x along the local \tilde{x} axis.

Stiffness Matrix (local coordinate)

$$K = \frac{Et}{12(1+\nu)} \begin{bmatrix} F+3\alpha & -3 & -F+3\alpha & 3 \\ 3/\alpha & -3 & -3/\alpha \\ Symm. F+3\alpha & 3 \\ & & 3/\alpha \end{bmatrix}$$
(A-26)

where $\alpha = \frac{a}{b}$ $F = \frac{2(1+v)}{\alpha}$

	$\int \frac{1}{9} + G$	$-\frac{1}{12}$ H	0	$\frac{1}{18} - G$	$-\frac{1}{12}$ H	0]	
		$\frac{1}{3}$	0	$\frac{1}{12}$ H	$\frac{1}{6}$	о	
$M = \frac{\rho a b t}{2}$			$\frac{1}{9}$	0	0	$\frac{1}{18}$	(A-27)
				$\frac{1}{9} + G$	$\frac{1}{12}$ H	1 3	
		Symm.			$\frac{1}{3}$	0	
						$\frac{1}{9}$	

where
$$\rho = \text{density}$$

$$G = \frac{\alpha^2}{30} + \frac{\nu}{18} + \frac{\nu^2}{30\alpha^2}$$

Consistent Mass Matrix (local coordinate)

$$H = \alpha + \frac{1}{\alpha}$$

It may look strange that the mass matrix depends upon Poisson's ratio v through G. This is due to the fact that the assumed displacement field is derived based on assumed stress field. (see Refs. 1 and 3)

5. Type 5 - PSP: Pure symmetric shear panel element with uniform thickness and isotropic material

This element is identical to a type 4 (SSP) element, except for a minor change in the assumed displacement state so that the stress state of the element is pure shear: i.e. $\sigma_x = \sigma_y \equiv 0$. This implies that $\varepsilon_x = \varepsilon_y \equiv 0$.

Strain Displacement Relation (local coordinate)

$$\gamma_{xy} = \left[\frac{1}{b}, -\frac{1}{a}, \frac{1}{b}, \frac{1}{a}\right] \left\{\tilde{u}_{p}, \tilde{v}_{p}, \tilde{u}_{Q}, \tilde{v}_{Q}\right\}^{T}$$
(A-28)

Stress-Strain Relation (local coordinate)

$$\tau_{xy} = \frac{E}{2(1+\nu)} \gamma_{xy}$$
 (A-29)

Stress-Displacement Relation

$$\tau_{xy} = \frac{E}{2(1+\nu)} \left[\frac{1}{b}, -\frac{1}{a}, \frac{1}{b}, \frac{1}{a} \right] \left\{ \tilde{u}_{p}, \tilde{v}_{p}, \tilde{u}_{Q}, \tilde{v}_{Q} \right\}^{T}$$
(A-30)

Local to Reference Displacement Transformation

same as type 4.

Stiffness Matrix (local coordinate)

same as type 4 except $F \equiv 0$.

Mass Matrix

Assumed to be the same as type 4.

6. Type 6 - TSP: Thermal symmetric shear panel element with uniform thickness and isotropic material

Since SSP and PSP cannot be used for problems involving thermal loads, this special element is added to the ACCESS-2 element library. The TSP element is designed to be used under steady thermal soak load conditions such that the temperature change in each TSP element is uniform and therefore symmetric with respect to the X-Y plane.

If the structure is subject to both mechanical and thermal loads, two structural models must be created and analyzed separately. One model is to use SSP elements to model shear panels and it is subject to only mechanical loads. The other model uses TSP elements to model the shear panels and it is subject to only thermal soak loads. These two models are created automatically, if the user specifies both SSP and TSP elements. Displacement and stress states of the structure subject to both thermal and mechanical loads are generated by superimposing the results obtained from the two separate models.

Theoretically, it is also possible to consider the PSP - TSP element combination, but this is not implemented in the current version of ACCESS-2.

Note that the TSP option requires a significant amount of core memory and CPU time, since two system stiffness matrices are stored and decomposed. Sensitivity analyses of the responses must be carried out separately and superimposed afterwards. Therefore, analysis effort is nearly doubled when thermal effects need to be considered.

Strain-Displacement Relation (local coordinates)

$$\begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{cases} = \begin{bmatrix} -\frac{1}{a} & -\frac{v}{b}(1-\frac{2x}{a}) & \frac{1}{a} & \frac{v}{b}(1-\frac{2x}{a}) \\ 0 & \frac{2}{b}(1-\frac{x}{a}) & 0 & \frac{2x}{ab} \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \widetilde{u}_{p} \\ \widetilde{v}_{p} \\ \widetilde{u}_{Q} \\ \widetilde{v}_{0} \end{bmatrix}$$
(A-31)

Stress-Strain Relation

$$\begin{cases} \varepsilon_{\mathbf{x}} \\ \varepsilon_{\mathbf{y}} \\ \gamma_{\mathbf{x}\mathbf{y}} \end{cases} = \frac{\mathbf{E}}{1-\nu^{2}} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{1+\nu}{2} \end{bmatrix} \begin{pmatrix} \varepsilon_{\mathbf{x}} \\ \varepsilon_{\mathbf{y}} \\ \gamma_{\mathbf{x}\mathbf{y}} \end{pmatrix} - \frac{\mathbf{E}\alpha\Delta\mathbf{T}}{1-\nu} \begin{cases} 1 \\ 1 \\ 0 \end{pmatrix}$$
 (A-32)

Stress-Displacement Relation

Local to reference displacement transformation

same as type 4

Stiffness Matrix (local coordinate

$$K = \frac{Et}{2(1-v^2)} \begin{bmatrix} \frac{1}{\alpha} & -v & -\frac{1}{\alpha} & -v \\ & \frac{4-v^2}{3}\alpha & v & \frac{2+v^2}{3}\alpha \\ & & \frac{1}{\alpha} & v \\ & & \frac{1}{\alpha} & v \\ & & & \frac{4-v^2}{3}\alpha \end{bmatrix} \begin{cases} \tilde{u}_p \\ \tilde{v}_p \\ \tilde{v}_q \\ \tilde{v}_q \\ \tilde{v}_q \end{pmatrix}$$
(A-34)

where $\alpha = \frac{a}{b}$

Force Displacement Relation (local coordinate)

$$K \tilde{u} - \frac{E\alpha\Delta T t}{2(1-\nu)} \qquad \begin{cases} -b \\ a \\ b \\ a \end{cases} = \tilde{f} \qquad (A-35)$$

Consistent Mass Matrix -

Assumed to be the same as type 4

Note: As shown in the stress-displacement relation, stress distribution is linear with respect to x. In order to simplify the problem, an approximate stress displacement relation is used in computing stress and stress sensitivity.

$$\begin{pmatrix} \sigma_{\mathbf{x}} \\ \sigma_{\mathbf{y}} \end{pmatrix}_{approx.} = \frac{E}{1-\nu^{2}} \begin{bmatrix} -\frac{1}{a} & \frac{\nu}{b} & \frac{1}{a} & \frac{\nu}{b} \\ & & & \\ -\frac{\nu}{a} & \frac{1}{b} & \frac{\nu}{a} & \frac{1}{b} \end{bmatrix} \begin{pmatrix} \tilde{\mathbf{u}}_{\mathbf{p}} \\ \tilde{\mathbf{v}}_{\mathbf{p}} \\ \tilde{\mathbf{u}}_{\mathbf{Q}} \\ \tilde{\mathbf{v}}_{\mathbf{Q}} \end{pmatrix} - \frac{E\alpha\Delta T}{1-\nu} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 (A-36)

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX B

INPUT DATA DESCRIPTION

I. Job description and heading cards (I1, 79A1)

The first column is used as follows

0 or blank: ordinary heading cards, whose contents in columns 2-80 will be printed on the first page of the output.

- 1 : indicates that this is the last heading card and input data cards follow.
- 2 : request for immediate normal termination of this job.

Any number of cards may be used to describe or to comment the job. Note that the last heading card must have "1" punched in the first column. Without this, all of the data may be regarded as heading cards.

II. Primary control cards

<u>Card 1</u>	(715)	
IOPT	:	1 = Input data check only
		2 = Structural analysis only
		3 = Structural analysis and constraint
		function evaluation
		4 = optimization by the NEWSUMT optimizer
		5 : Not used yet
IPRINT	:	Printout control parameter except for output
		from each optimizer.
		2 = Standard output

IGLINK	: 0 = standard execution
	-200 = removal of stress constraint regionali-
	zation
	-300 = removal of stress constraint regionali-
	zation for fixed size elements only
IANALY(1)-	IANALY(4)
	: Not required to specify (leave as blanks) if
	IOPT \geq 4. Must specify if IOPT \leq 3.
IANALY(1)	: 1 = Compute displacement
	0 = Skip displacement calculation
IANALY(2)	: 1 = Compute stress/strain for all elements
	0 = Skip stress/strain calculation
IANALY(3)	: 1 = Compute eigenanalysis
	0 = Skip eigenanalysis
IANALY(4)	: O always
<u>Card 2</u> (10	15)
IN	: Total number of nodes
IBN	: Number of boundary nodes
INL	: Number of load conditions
IMATIS	: Number of isotropic materials
IMATOR	: Number of orthotropic materials
INITVG	: Number of initial value groups for design varia
ILOWBG	: Number of minimum size groups for design varial
IUPPBG	: Number of maximum size groups for design variab

•

ITHLDG : Number of thermal load groups

IPRLDG ': Number of pressure load groups

<u>Card 3</u> (1015)

 $IETP(1), 1 = 1, 2, \dots 10$

Number of elements in the 1-th element type

- i = 1 TRUSS
 - 2 CSTIS CST isotropic
 - 3 CSTOR CST orthotropic
 - 4 SSP symmetric shear panel
 - 5 PSP pure shear panel
 - 6 TSP thermal shear panel

III. Node Coordinates (I5, 5X, 3E10.4)

IN cards are required to specify the node coordinates of node numbers 1 through IN. The order of the cards may be random.

- n; : Number of the 1-th node
- Xn₁ : X coordinate of the node n₃
- Yn, : Y coordinate of the node n,
- Zn, : Z coordinate of the node n,

IV. Boundary Conditions (415, 3E10.4)

If all 3 degrees of freedom' associated with a node are free, the node is not a boundary node. Otherwise it is a boundary node and for each boundary node, a card is required.

* not available in the current version

PDX bn	prescribed nonzero displacements
PDY bn ₁ PDZ bn ₁	<pre>i required only for constrain code = 2 i</pre>

V. Element Data

If IETP(1) = 0 for the 1-th element type, no data 1s required. For each element type with IEPT(1) \neq 0, IETP(1)+1 cards are required.

Card 1		: element type number (15)
Card 2	-IETP	(1)+1 : element information (1115)
M	:	element number
NP	:	node number corresponding to the internal
		node number P
NQ	:	node number Q
NR	:	node number R
NS	:	node number S
LGN	:	linking group number, = 0 for the fixed size
		elements
IGN	:	initial value group number
LBG	sn :	lower bound group number
UBG	n :	upper bound group member
MTL	GN :	material group number
		> 0 for isotropic materials : 1,2,
		< 0 for orthotropic materials: -1,-2,
SCC	:	side constraint code
		-1 : element size restricted by the lower
		bound only

- 0 : non negativity constrain only
- 1 : element size restricted by the upper bound only
- 2 : element size restricted both by lower and upper bounds

Comments

- Elements must be numbered starting from 1 through IETP(1) for each element type. For example, if a structure is modeled using 100 TRUSS elements and 300 CST elements, TRUSS element numbers are 1,2,3,...100 and CST element numbers are 1,2,3...300. Within an element type, order of element data cards may be random.
- NR and/or NS are not required for element types with only 2 or 3 nodes per element.
- 3. LGN, linked group number starts from 1 for each element type. For example, if a structure is modeled with 100 TRUSS and 300 CST elements, with 10 and 30 design variables allocated to TRUSS and CST, respectively, then the linked group number for TRUSS runs from 1 through 10 and that for CST ranges from 1 through 30.
- VI. Initial Values (7E10.4)

INITVG real numbers must be given. If INITVG > 7, two or more cards are required. The first value of the first card indicates the initial value for the group number 1, and so on. VII. Lower Bound Values (7E10.4)

Minimum gauge values. ILOWBG real numbers must be given.

If ILOWBG > 7, two or more cards are required. If

ILOWBG = 0, no card is required.

VIII. Upper Bound Values (7E10.4)

Maximum gauge values. IUPPBG real numbers must be given. If IUPPBG > 7, two or more cards are required. If IUPPBG = 0, no card is required.

IX. Isotropic Material Data (6E10.4)

IMATIS cards are required and on each card the following 6 real numbers must be given.

- E : Elastic modulus
- v : Poisson's ratio
- γ : Specific weight
- α : Thermal expansion coefficient
- $\boldsymbol{\sigma}_{_{\mathrm{T},\mathrm{R}}}$: Allowable compression stress
- $\sigma_{_{\rm IIB}}$: Allowable tensile stress
- X. Orthotropic Material Data (7E10.4/7E10.4/6E10.4)

IMATOR X 3 cards are required, i.e. for each material group 3 cards are required, containing the following data.

Card 1

- $\mathbf{E}_{_{\mathsf{T}_{_{}}}}$: Longitudinal elastic modulus
- E_{rp} : Transverse elastic modulus
- $G_{T,TP}$: Shear modulus
- $\nu^{}_{\rm T,T}$: Longitudinal Poisson's ratio
- γ : Specific weight
- $\alpha_{T_{c}}$: Longitudinal thermal expansion coefficient
- α_{m} : Transverse thermal expansion coefficient

Card 2

٤ _L	:]	Direction cosines of the longitudinal
m _L	: }	axis with respect to system reference
ⁿ L	:]	coordinates
$\epsilon_{\rm L}^{\tt t}$:	Tensile allowable longitudinal strain
$\epsilon_{\rm L}^{\rm C}$:	Compressive allowable longitudinal strain
${}^{\epsilon}_{{ m T}}^{{ m t}}$:	Tensile allowable transverse strain
$\epsilon_{\mathrm{T}}^{\mathbf{C}}$:	Compressive allowable transverse strain
$\gamma_{\mathbf{LT}}$:	Allowable shear strain
${\tt F}_{\tt L}^{\tt t}$:	Tensile allowable longitudinal stress
$\mathbf{F}_{\mathbf{L}}^{\mathbf{C}}$:	Compressive allowable longitudinal stress
${\tt F}_{{\tt T}}^{{\tt t}}$: ~	Tensile allowable transverse stress
$\mathbf{F}_{\mathbf{T}}^{\mathbf{C}}$:	Compressive allowable transverse stress
F _{L.P}	:	Shear allowable stress

Comments

- 1. The transverse Poisson's ratio v_{TL} is internally computed using the relation $v_{TL}E_L = v_{LT}E_T$
- 2. Depending upon the failure criteria applied to the specific material, either strain allowables or stress allowables are left unspecified. Failure criteria options will be specified later in the category XX.

XI. Lumped Nodal Loads

Two card groups are required to specify lumped nodal loads applied to the structure.

Card Group 1 (1415)

Number of nodes subject to lumped nodal loads for each load conditions. INL integer numbers must be given. Card Group 2 (15, 5X, 3E10.4)

For each load condition, the specified number (by the group 1 cards) of cards must be given to identify the node numbers and associated load components in the reference coordinate system.

XII. Pressure Load Data

No card is required if IPRLDG = 0. If IPRLDG > 0, the following 5 groups of cards must be given.

Card Group 1 (1015)

Number of elements subject to pressure load for each element type. (Presently, only CSTIS and CSTOR elements can be subject to pressure loads).

Card Group 2 (14I5)

Pressure load ON-OFF flag for each load condition.

 $ONOFF^{k} = 0$ No pressure load for load condition k

- 1 Pressure load should be considered for the k-th load condition.

Card Group 3 (1415)

Element numbers subject to pressure loads for all member types corresponding to NEPL^{MTYP} $\neq 0$. For each element type, the first element number subject to pressure load must be punched in columns 1-5; namely the group 3 cards should be subgrouped for different element types.

Card Group 4 (1415)

For each load condition corresponding to a load condition with $ONOFF^{k} = 1$, an identical amount of data similar to that specified in the card group 3 must be given. Those numbers designate the pressure magnitude group numbers, which are the pointers to the pressure magnitude applied to the corresponding element type and element number.

This set of cards should be given for all load conditions with $ONOFF^{k} = 1$.

Card Group 5 (7E10.4)

Pressure load magnitude for each pressure load group must be given. IPRLDG real numbers are required.

Comments:

1. The direction of the pressure force is determined by the node numbering scheme of the triangular element and also by the sign of the pressure load magnitude specified in the card group 5. When the P, Q and R nodes of the triangle are in counter clockwise order and the corresponding pressure magnitude has a positive sign, positive pressure is applied to the surface of the triangular region.

Fig. B-1 Pressure Load Sign Convention

 Pressure applied on a single triangular surface must be uniform; no variation of pressure over an elements surface can be represented.

XIII. Inertia Load Data

Self-weight in a gravitational field or uniform translational acceleration will be accounted for by specifying this set of data. Note that rotational inertia loads cannot be considered Two groups of cards are required.

Card Group 1 (14I5)

 $INERTL^k$: $k = 1, 2, \dots INL$

Interia load ON-OFF for each load condition.

1 : Inertia load exists

2 : No inertia load for the load condition Card Group 2 (4E10.4)

For each load condition with $\text{INERTL}^k \neq 0$, one card will be required.

ACC^k : Magnitude of acceleration in units of the standard earth gravitational field (i.e. 4g)

X : Direction cosine components of the acceleratio Y : vector in the reference coordinate system. Z :

XIV. Thermal Load Data

No card is required if ITHLDG = 0. If ITHLDG > 0, the following 5 groups of cards must be given.

Card Group 1 (1015)

Number of elements subject to thermal load for each element type.

Card Group 2 (1415)

Thermal load ON-OFF flag for each load condition.

 $ON-OFF^{k} = 0$ No thermal load for load condition k

1 Thermal load should be considered for the k-th load condition.

Card Group 3 (1415)

Element numbers subject to thermal loads for all member types corresponding to NETH^{MTYP} \neq 0. For each element type, the first element number subject to thermal load must be punched in columns 1-5; namely the group 3 cards should be subgrouped for different element types.

Card Group 4 (1415)

For each load condition corresponding to the load condition with $ON-OFF^{k} = 1$, an identical amount of data similar to that specified in the card group 3 must be given. Those numbers designate the temperature magnitude applied to the corresponding element type and element number. This set of cards should be given for all load conditions with $ONOFF^{k} = 1$.

Card Group 5 (7E10.4)

Temperature change for each thermal load group must be given. ITHLDG real numbers are required.

Comments:

- 1. Each element is considered to have uniform temperature.
- 2. Temperature change should be computed with respect to an appropriate uniform reference temperature. Note

that 1f all elements are made of the same material and assume the same temperature, then thermal stress are not induced.

XV. Flight Condition Data

This block of data will be reserved for future development of ACCESS-2 program which may include flutter constrains. Specify 0 for all IFLIGH^k, k = 1,2,...INL. No additional cards are required.

XVI. Lumped Nodal Mass Data

Card 1 (15)

NMASS : Number of lumped nodal masses

Card 2-(NMASS+1) (15, 5X, E10.4)

- : Node number to which the mass is attached.
- : Weight of the mass

Comment:

Note that the magnitude must be given in weight units, not in mass units.

XVII-XXII Constraint Control Data

There are 5 types of constrains which can be specified. Each constraint type may have different truncation control,

- although the method used is identical for all types of constraints. The truncation strategy is similar to the one used in ACCESS-1, but the sign of feasible region is reversed. If $a g^{th}$ constraint function at a design $\vec{\alpha}$ is evaluated as $h_q(\vec{\alpha})$, $h_q(\vec{\alpha})$ is compared with a truncation boundary value (TBV) which is determined by

$$TBV = + \{Min[h_q(\vec{\alpha}) - C]\} \times TRF + C,$$

where Min is applied to all q's in the constraint type. q Initially, TRF is set to be TRF-initial and at the end of each design state, TRF is updated by

TRF = TRF x (TRF multiplier)

Since TRF-multiplier is chosen to be less than 1, TBV is decreased stage by stage, which means more and more constraints are truncated as the design proceeds.

XVII. Side Constraint Control Data

Since side constraint codes are specified in the element data, only truncation control parameters are specified:

TRF-initial	:	Initial truncation factor
TRF-max	:	Upper limit of TRF
C-cutoff	:	Cutoff base value
TRF-multiplier	:	TRF modification multiplier

XVIII. Displacement Constraint Control Data

Card 1 (I5)

NDPC : Number of constrained displacement degrees of freedom

Card 2 (E10.4)

TRF-initial	:	Initial truncation factor
TRF-max	:	Upper limit of TRF
C-cutoff	:	Cutoff base value
TRF-multiplier	:	TRF modification multiplier

Min. Norm Ftr.	:	Minimum constraint normalization
		factor. Constraints are usually
		normalized by the absolute values of
		the limiting values.
<u>Card 3 - (NDPC+2)</u>	(315,	5X, 2E10.4)
Node 1	:	Node number associated with the i-th
		displacement constraint
Ixyz	:	Direction identifier
		0 = not used
		1 = X direction
		2 = Y direction
		3 = Z direction
Code	:	-1 = Lower bound only
• .		0 = No constraint
		l = Upper bound only
		2 = Both
Lower Bound	:	Lower bound of the displacement
		component
Upper Bound	:	Upper bound of the displacement
		component

XIX. <u>Slope/Relative Displacement Constraint Control Data</u> This constraint type is restricted to place bounds on relative displacement components of two arbitrary nodes. In other words, the difference between Y-displacement components of the Lth and Uth nodes may be bounded. But the difference between thé Z-displacement of Lth and X-displacement component of Uth node cannot be bounded.

<u>Card 1</u> (I5)

NSLC : Number of slope/rel-displacement constraints Card 2 (5E10.4) TRF-initial : Initial truncation factor : Upper limit of TRF TRF-Max C-cutoff : Cutoff base value TRF-multiplier : TRF modification multiplier Min. Norm. Ftr : Minimum constraint normalization factor Card 3-(NSLC+2) (315, E10.4) Node $\binom{(L)}{1}$: Node number of the Lth node associated with the ith slope constraint Node (U) Node number of the Uth node associated : with the ith slope constraint : Direction and code ^{I}xyz 0 : not used 1 : X direction relative 2 : Y direction displacement 3 : Z direction 4 : X direction 5 : Y direction { slope 6 : Z direction Upper Bound : Upper bound of the slope/rel. displ. Note:

1. If
$$I_{xyz} = 1$$
, for example, the constraint function is
 $1 - (U_x^{Node} - U_x^{Node}) / Upper Bound \ge 0$

2. If
$$I_{XYZ} = 4$$
, for example, constraint function is

$$1 - \frac{U_X^{Node} (U)}{U_X} - U_X^{Node} (L) / Upper-bound \ge 0$$

where D_{YZ} is the projection of the distance between node ^(U) and node ^(L) to the Y-Z plane.

- 3. If lower bound is to be specified, node^(L) and node^(U) should be exchanged to transform it to an upper bound constraint.
- XX. Stress/Strain Constraint Data

 $\underline{Card 1} \quad (1015)$

Code MTYP : Stress/Strain constraint code

Except for element type 3

-1 = read stress constrain code element by element

0 = no stress constraint

- 1 = all elements in this element type are constrained by lower bounds on compression stress
- 2 = all elements in this element type are constrained by upper bounds on tensile stress or Von Mises combined stress (Element Type 1 or Types 2,4,5,6)
- 3 = effectively this implies that both codes 1 and 2 are applied simultaneously

For element type 3

-1 = read strain constraint code element by element

0 = no strain constraint imposed

- - 2 = stress interaction criteria imposed on all eleme:

- 3 = Tsal-Azzi criteria imposed on all elements Card 2 (7E10.4)

TRF-initial	;	Initial truncation factor
TRF-max	:	Upper limit of TRF
C-cutoff		Cutoff base value
TRF-multiplier		TRF modification multiplier
Min.Stress Norm Ftr.	:	Minimum stress constraint
		normalization factor
Min.Strain Norm Ftr.	:	Mınimum straın constraınt
		normalization factor

TEBCF : Truss Euler buckling control factor

If TEBCF < 0, TEBCF stands for the specified mean radius r of the truss element assuming tubular cross section. Stress constraint is

$$\sigma \geq \max\{\sigma_{\text{allowable}}^{c} - \pi^{2} \text{Er}/2\ell^{2}\}$$

If TEBCF > 0, it stands for the thickness to mean radius ratio of the truss element (r) assuming cylindrical cross section stress constraints

$$\sigma \geq \max\{\sigma_{\text{allowable}}^{c} - \pi^{2} EA / [4 \ell^{2} \cdot (\frac{t}{r})]\}$$

If TEBCF = 0, no Euler buckling constraints are considered.

Card 3 - (14I5)

Stress/strain constraint specification for element type

code, Code ^{MTYP} < 0. If all Code ^{MTYP} are positive, no cards are required.

For each element type with Code $^{MTYP} = -1$, stress/ strain code must be given to all elements sequentially starting from element number 1.

Element stress/strain constraint code.

Stress code

- -l : only compression side is bounded
 - 0 : no constraint
- +1 : only tensile (truss only) or Von Mises combined stress is bounded
- +2 : both compressive and tensile stress are bounded.

Strain code

same as Code^{MTYP} specification

- XXI. Natural Frequency Constraint Data
 - Card 1 (2I5)
 - NFREQ : number of lowest frequencies to be bounded
 - NSPACE : frequency constraint approximation scheme
 0 = first order Taylor series expansion with
 respect to linked reciprocal variables
 - (linear in the optimization design space).
 - l = first order Taylor series expansion with respect to linked direct variables (nonlinear constrain in the optimization design space)

2 = second order Taylor series expansion with

respect to linked direct variables

Card 2 (7E15.6)

TRF-initial	:	Initial truncation factor
TRF-max	:	Upper limit of TRF
C-cutoff	:	Cutoff base value
TRF-multiplier	:	TRF modification multiplier
Min.Norm.Ftr.	:	Minimum constraint normalization
		factor
Elg. Conv.	:	Eigenvalue analysis convergence
		criteria (see note below)
Acc. Gravity	:	Acceleration of gravity
		If 0.0, American standard unit is
		assumed and replaced by 386.0 in/sec ² .

Note: Subspace iteration algorithm is used to obtain eigenvalues and eigenvectors. Iteration is judged to be converged if the relative differences of all eigenvalues are less than Eig. Conv.

Card 3 (15, 2E10.4)

Code^{f=1}: constraint code

-1 = 1 ower bound only

0 = not bounded

1 = upper bound only

2 = lower and upper bounds

Lower Bound : lower bound on the 1th frequency Upper Bound : upper bound on the 1th frequency

XXII. Not used

Card 1 : supply one blank card.

XXIII. NEWSUMT Optimizer Control Card

Card 1 :

JPRINT	:	Optimizer	printo	ut	control
		standard o	output	= 0	

- MAXSTG : Maximum allowable number of stages
- MAXRSF : Maximum number of response surfaces per stage; i.e. response factor is reduced MAXRSF times before the approximate problem is updated.
- MAXODM : Maximum allowable number of one dimensional minimization per response surface

JSIGNG : sign of feasible region
l : feasible region is
$$q_q(\vec{\alpha}) \ge 0$$

-l : feasible region is $q_q(\vec{\alpha}) \le 0$

Card 2 and 3 :

$$|W_{p} - W_{p-1}|/W_{p} \leq EPSSTG$$

$$|W_{P-1} - W_{P-2}|/W_{P-1} \le EPSSTG$$

EPSODM : Unconstrained minimization convergence criterion. Convergence is obtained if the relative values of total function at the ends of 3 successive one dimensional minimzations are not different by EPSODM.

RACUT : Response factor decrease ratio

STEPMX : Maximum step size at each stage. All design variable components are constrained by

 $\frac{1}{\text{STEPMX}} \leq \beta_{1} \leq \text{STEPMX. } 1 = 1, \dots B.$

ITP : Initial transition point for the extended penalty function

- Power Fr : specify = 0.5
- Coefficient : specify = 1.0
- STEPMX-mul : Maximum step size modification multiplier
- STEPMX-L.L. : Lower limit on the STEPMX
| | | T | | | | | · | | · · · · · · · · · · · · · · · · · · · | | · | , | | |
|---------|----------------------|--------------|-------------|----------------|---------|----------|-----------|-----------|---------------------------------------|-----------|---------------|-----------|------------|-------|
| colum | n numbe | ţ | | | | | } . | | | | i | 1 | 1 | |
| | 1 10 | <u></u> | 20 | 25 | <u></u> | 35 | 40 | 45 | 50 | <u>55</u> | 60 | 65 | 70 | |
| | | | ļ | | | | | | _ | | ' _ | 1 | | |
| { } | He | odin | h Car | 15 (| any r | umbe | r of | fande) | | | | ĺ | | |
| - - | | | | | | | | Test MS 1 | | | ; | | ł | |
| | <u></u> | / | | | | | | <u> </u> | | - | | | - 1 | - |
| 1 | <u>1 La</u> | <u>st He</u> | ading | Card | (1) | n colu | mn 1 | <u>/</u> | | | | | 1
 | |
| IOPT | STPRINT | IGLINK | IANALY (| 1) ~ T | ANALYC | 4) | MFLAG | | | | | | 1 | |
| 7.4 | · 784 | TNL | IMATIS | TMATOR | TNITVG | TLOWBG | IUPPBG | TTHLDG | IPRING | $ M_{c}$ | aster (| [ontro] | (Cards | - |
| | | - | | | 2 | ,, | , | TETO | | | | ، ،
ا | | ľ |
| 12 | $\frac{p_{T(1)}}{1}$ | r | ~ | | | ¦
r | ۱
۲۰۰۰ | 16/7 | (10) | | | | | |
| Nøde | | L _ | (| 1 | | ļ | | } | ļ | | | | | |
| NO | . | | | ļ | | 1 | 1 | | | _ | | | , | } |
| [| not- | | ĺ | | | | 1 | <u>}</u> | Node (| Coordi | nates | | í | |
| | used | | | | | | L. | | - <i>T</i> (| "Caro | 1. | | | |
| n_{i} | | X1 | 12 | } | nc | 2 | 5n6 - | | | Curr | | | i i | |
| í | | l , i | í | | '
 | | | | | | | | , İ | 1 |
| Bound | 1 | | [| | | , | | | | | - | 1 | ' | |
| Mada | ry | | | Pre | scribe | ed Klons | erro Di | solation | rept: | | } | _ | | |
| No | | | | | (not | unt ou | m 1/a L | 27 / 0. 0 | | Bo | undar; | y Cond | litions | |
| | } | |] | | (100 | 900 m | ~~~~~ | | | 1 "7 | BN" | ords | | 1 |
| bn. | IBX. | IBY | IBZ. | Dx | 6- | ר א | | DZ | 6m. | | 1 | | , . | · · · |
| 2 | - Onc | . <i></i> | | | . On L | ÷. | 011 | | · · · · | | | • • | | |
| · | | | | <u>_</u> | | | | | | 1 | | `` | | 1 |
| MTYP | I | · · · · · · | | | | Trades | Laway - | lanar | Mater | 10.1- | 1 | } | ~ · | |
| | | | | · ¹ | Linking | Value | Bound | Baund | Gund | siae |) | | repeat : | tor |
| Element | P-Node | W-Node | K-No12 | 5-Node | Group | Group | Group | Group | Чкоир | Constra | (<i>n</i> [] | | All Elem | ent |
| -No | - <i>No</i> | - <i>No</i> | No | No | No | NO | No | NO | NO - | coar | 126/1 | (MIYP)[', | tuner who | 12 |
| | | | • | i | | · [| | | | t | Gar | ts [' | gpes with | - |
| ML | _ | | | 1 | | | - 1 | | | | | | ΤΕΤΡ(ΗΤΥ) | ツキの |
| | – | | | 1 | | | 1 | ' } | | | 1 ' | 1 | | 1 |
| | | | - | - | - | | I | | | | J |) | i | - |
| | L | | | | | ! | + | l | l | | | L | | |

ACCESS-2 CARD IMAGE FORMAT (1)

.

ORIGINAL PAGE IS OF POOR QUALITY ACCESS-2 CARD IMAGE FORMAT (2)

column number				1		1		i	<u> </u>	,	•		
5 10	15 DJait	20	25	30	.35	40	45	50	<u> </u>	60	- Tait	70	<u>75</u>
Group = 1	STEON	p=2		<u>-</u> -							DGrou	4p = 7	
Daroug=8				1						I	• ••		
In	itial	Design	Varia	bles	(7E)	10 4)				1			
					•				-		-	-	
DLower Bound	nLowe	r Bound	·	4				[·	
- Sroup=1	5 gro	кр=2			!			Į	1	Ì		I.	
· · · · · · · · · · · ·	l	1	_										
6	wer Boi	unds of	Desig	an Vari	ables	(7E/	04)	1	ļ			•	
· · · · · · · · · · · · · · · · · · ·	i 					1 	<u>-</u>				·		
D Group # 1	DETROU	Bound 0=2]			1						DGrau	Bound	
					:	1	1	-	r	-	, ,,		
,	and the F	Sounds	an De	esian L	bricht	Les 17A	[n.4]			{	1		
	oper c	Junnis	01 0	- <i></i>	11.001	i (/ -		-	,	-			
	-		~~~~~	<u> </u>	/			<u> </u>	<u> </u>		+		
Elastic	POISS	ons	Speci	fic	Therm	1a/	Comp	ESSIVE	lensi	le		1	1
Modulus	rac.	0	Wer	gnc	Coeffi	sion clent	Stres	a 010 15	Stree	IADIC Se			
		•					0070	[· · · · · ·	1			
Mater	al Co	onstan	ts f	or Is	otropi	c Mar	terial.	5	1				_
E4	E		Ğ	17	, v			2		XL		¥7	
l lu	2	2.	r. N	2,			م ح	i c	م ا	e e	, , , , ,	c .	
		- ť	5	- 6	4			f c		=		.47	
6alt .	- 1	2		4	1	T		Τ		[47	i		
I						 			ļ ŗ-	1	1 -		
- Mater	al C	onstan	its for	, Orth	ptropic	: Mate	erials	(3(7	E 10.4	Π.			
	3 c	ards.	per 1	mater	rial -	not r	equire	d if I	MATOR	'=0			
		ŀ	1			1	. D	i J 1.a. mu	1				
			i	1						1	• -		

ACCESS-2 C	ARD	IMAGE	FORMAT	(3)
------------	-----	-------	--------	-----

colum 5	n number 1 10	15	20	25	30	.45	40	45	50		60	65	70	75
<u>NN^{k=1}</u>	INNK=2	r of No	- des S	ubject	to Lun	iped N	eda/L	pads f	or Loa	l Condi	tlen k	(14IS) '		
Node No		F Х= Сом	ponent	F Y-com	ponent	F Z-сотр	onent					-		
	usea	Lumpi 	ed Loa 15, .	ds for 5X, 3	Load C E 10 4	ond i troi	,= 1		_					
Node No		<i>F</i>	₿ x		۶ -	Р	2			~	-		 	-
	Used	Lumpe	d Load	ls for L	oad Co	nd i ti on	=2			-		1 **		
		-	:	i i								!	••••	
											-	i 	ł	-
			-	 			.	-	-+		 - ,		 -	
	 		-				t I			- +	}		-	

ACCESS-2 CARD IMAGE FORMAT (4)

column number			20	24		40	45		55	1		70	75
NEPL ¹ NEPL ²	NEPL ³		4 2	30	33	<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	NEPL 10			¦92		
Number	of Ele	nents	subject	t to Pr	essure	Load +	or Each	Eleme	nt Typ	⊱ ?€	j		
ONOFF' ONOFF2	_]			}	 				•			1
Pressure	Load	ON-OFI	FLag	for Ed	ach Lo	ad Con	dition	1=01	$\phi = oI$	FA	l,		<u> </u>
$M_1' = M_2'$	M'_3				ļ					ĺ			_
: Element	Numb	er su	bject t	a Press	ure Loc	d for	Elemen	: TYPE=	= 1 (Na	t requ	red of N	EPL=0)	
$M_1^2 M_2^2$	M_3^2	M ₄		-	ļ	1		!		1		2	
Element	Numb	er sub	iject to	Press.	ure Loc	id for	Elemen	t Type	= 2 (Noi	trequir	ed if NE	PL=0)	
		j-	ι,		ļ	ţ				ı	-		
M10 M10	MIO	M'0	ן 	-		ĺ	I	-	-	1			
NPGM! NPGM!	NPG "		,-										
Pressure	Load	Group	No aj	plied	to the	corres	ponding	Eleme	ntsin	MTYP=	, Load	•	
NRGH NPGH	NPGH3				ļ	1			1	1	Condi	tion=1	Kepcat
					ł	•]	-	;		 		LNL Hunge
-	-			1	l	I							-
			 . ,		1 1 1	l							-
NPG MIO NPG MIO	<u> </u>						i						ا ^ا
PG_1	PG	a	PG	3	Pg	τ <u>φ</u>	••	·	1				
Pr	essure	Mag	nitud	e for	Each	Priesse	ere Gr	оир –	47 <i>E 1</i> 9	-4-)	:		
	('z	PRLDG	' num	bers	nust	be gir	₽n)			•			
-	,						-						
	~	ŀ		İ				- }					

column number													
51 10	15	20	25	<u>, 10</u>	35	40	- 95	50		60	65	<u>70</u>	
ON-OFF ONDEF	ONOFF'	• • •	1		ļ	-	-	-	ļ	-	,		
Inertia	Load	ON-OF	F Fla	g for	EACH L	oad C	onditi	<i>bn (1=</i>	pN, Ø=	OFF)	·	4	
ACC K=1	<u>Cos</u>	X_ <u>K=</u> 1	<u>cos</u>	YK=1	C032	<u>* *≞</u> /	-		1		- ·	1	
ACCK=2	_ <u></u>	X K= 2-	_ 20,5	Y K=3 .	C052	<u>}</u> ≰=2 .	+	-			_!		
	-) i]							- !	
Magnitude of			t ,		ļ	ļ	Ū.		الم م		d cond	tions	-
Acceleration	-	Dire	ction (Cosine	គ			- requ	urea j	or Ioa	a cona		~
in the unit_	-	l o	f Acc	e <i>ler</i> at	Yon Vec	tor	Wh	ose c		+1095	are q		-
gravitational		-	Í.,	· .	ļi	1			;		;	ļ	-
Constant '9'						ł				-		1	-
		-	[]		-	-	-					ł	- [
ACC K= INC	Cos	K K= INL	COSY	K=INL	COSZ	K= INC	/			-			Í
	1												
1	1			ĺ		. 1				-		1	
		-	ļ									1	
	ſ	1		1								۲ .د	
	~						- 					-	
			1							1	۱ ۱	-	
												!	
		_									, ,	[
]			ļ									}
]	- 1	İ		ĺ	İ	[1	- 1	-	1-	[
		•							-	i r		3	[
		ĺ	ļ	ŀ		1	_		1		-	1	

ORIGINAL PAGE IS OF POOR QUALITY ALCESS-2 CARD IMAGE FORMAT (6)

		1		·	7	T	·		,	1	~~~~~			
Corumn 5	110mber /Q	15	20	25	30	35	40	45	50		60	65	70	75
NETH A	IETH2	NETH 3	•	•				-	NETH "		;			
Nu	mber	of Elen	ents Si	ubject	to Ther	mal Lo	ad for	Each E	lemen.	t Type	- 1			i
ONDEF 1 C	WOFF ²	ONOFF3	ļ <u>.</u> •	• •	• -			,			<u>ب</u>	· . ·		
The	<u>ermal</u>	Load C	N-OFF	Flag 7	for Eac	h Load	Condit	10n 1	= oN,	\$ =0	FF	·		
<u>M</u> '.	M2	Má	Ma	Ms	•	、 1	ł			ĺ	'	,		
EVe	<u>me</u> n i	t Namb	ers Su	bject 7	to Ther	mal Lo	ads for	Elemen	t Type	L (Not.	Pequired	of NETH	$f'=\phi$	
Mi	Mi	Mŝ	1	1		ĺ	1	 _			'	3		
Ele	ment	Numbe	ers Sui	bject t	to Therm	pal Loa	ds for	Elemen	Type :	\$ (Not h	Required	, if NETH	²= Ø)	
-		-	t		I	_	į –		-		, — ,		i	
1.10	 (P		!		1	ŀ	1		-			-		
M, Y	M2	M3)]	· · · · · · · · · · · · · · · · · · ·	<u> </u>				 				、
NTET MI A	ITG M'	NTGM			1		i J			, 				
The	rmal i	load G. I	roup Ni	imbers	Corres	ponding	g to the	Elemen	t Numb	ers in l	177 <i>P=1</i>			Repeat
NTGM? N	/TGH2	NTGH3	NTG HA		• • • •	t •			. 1		1 j			INL
Ther	mall	oad Gr	oup Nu	mbers	Corres	ponding	to the	Elenient	Numbe	rs 10 A	1779 = 2			Times
				i ;		ł								
			i I			1	•	1			,			
NTGH " N	179 H2	NTG M's		<u></u>							·			ע ו
P.G.;	۰ <u> </u>	<i>29</i>	3	i PG	÷3	P_G	4	• •	•					
The	mal	Load	Tempe	rature	devia	tion fo	rom th	e refe	rence t	empere	iture)			
- Mag	mitu	de fo	- Eac	L Ther	mal L	oad G	roup			· ·	1		1	
ן ו י		('ÍTH	LDG'	numb	ers m	ust b	give	m)		1	ļ			
~-		-	1					-	1					
					L			}				1		ļ

.

-

ACCESS-2 CARD IMAGI FORMAL (7)

column number 5 /0 /5	20	25 30	35	40	45	50	55	60	65	70	75
ONOFF ONOFF ONOFF ONOFF 3	••••							-			
_ Flutter Analy	SIS ON-OFF	Flag fo	- EACH	Load	Condit	100 (1 = ON	Ø=0	(77		
(Capabili	ty not ave	21/able	in the	prese	nt ver	5101,	specif.	× Ø)			
TT RH	p1 ,	4 ¹	H	z	ALPA	IA ¹	и	1	74		
Free Stream Air D Velocity	Pensity Spe S	ied of ? ound ;	Alti	tude	Root A of Att	Ingle ack	Paylo	ad -	Air Tempe	rature	
	I		ĺ			(
TT INL RHO	ZWC A	INL		50/L I	ALPA	A INL	w	TNZ ;	75	NC	
			, 1 1	i k		í	-			J 	
NMASS (Number of	Nodal Lump	ved Masse	s)	1		ļ		-		i	
Node Number		1	 1	i		.	-	~	1	i 1	
n, Used W	2.	IMASS Cali	rds ar	e regu	ured	-			¦	ļ	-
				i			-			,	
		• • • • •									-
				• •	-	-		i			
	ļ			ļ			i 	-			-

ORIGINAL PAGE IS OF POOR QUALITY

Access-2 card image format (8)

								<u>. </u>	,				
column num 5	ber 10 /5	- 20	 25	30	35	40	45	50	55	60	65'	70	75
TRFINITIAN	TRF	Max	C ^{Cut}	offBase	TRFM	tiplier	Side	Const	raint	Control	Paramete	ers	_
ii				l							l .		
NDPC (A	unhar or	Disal	acement	Const	rawts	,			1		 1 1		
TRFINITIA	L TRF	Max	C Cui	off Base	TREMU	tiplier	MIN NO	rmalizat	100			1	
Node, IXY	<u>, 'ICODE</u> ,		Lowert	Bound 1	Uppert	Bound 1	- raci			isplac	ement		-
Nodez IXY	ICODEZ		LowerE	bund z	Upper E	Bound 2			} c	onstro	unt		
_ (Direc	tich)	Not Used	1 L	1	1	•			Z	ata	1		
			1		1	1				1 —			
NodeNor DY	NOR ICODE	NDA:	LowerBa	DUNDNOCE	Uppert	BOUNDNACE		-	¦)	1 -			
1	-	1			1 1 1		-		L		-	r r	
NSIC (A		1 f. Slan	· / Palor	1 here Der	placemen	t Con	1 strain	[(s)	י א	; ;]	•	
TRFINITIAL	TRF	Max	C ^{Cuto}	H Base	TRF	dtip/ier	Min No	rmaliza	£1017				
Node; Node	" IXYZ,	Upper	Bound s			i 1	/ ~~~. 1	<i>07</i> 	i İ.s	Yope R	elative Di	splacen	ent.
Node: Node	IXYZz	Upper	Bound 2		1					Constr	aint	7	.,
					 	; 	, .			Data	 F		
		-	.] •						-	· · ·		ļ	
Node is Node	INTZASLO	UpperB	oundNSLC						J	1		•	
			1				-						
							' <u>-</u>	-	-	-	4		

•

ACCESS-2 CARD IMAGE FORMAF (9)

.

colum 5	n number	15	20	25	30	35	40	45	50	55	60	65	70	75
CODE'	CODE ²	CODE ³	lax	Cutoff	Factor	TPEM	e da la la cara	Min Sti	CODE ¹⁰	Min St	raig	Truss Ed	uler	
	,			<u> </u>		7.1717		Цогта II Fact	or or	Normal Facto	* 2a±1011	Bucking Facto	Contro/	stra stra
	- Con	strall	t Cod	es for	All Ele	ments	with	Negat	ive Ty	pe COD	E. (14	. <u>[</u> 5]	-	-ses
		- regu	i	for en			n posi	<i>tive l</i>	gpe cc	<i>DE</i>]				[રે રેં]
VFREQ	NSPACE			1 1 1	Í				-	-				4r (
TREIN	tial	TRF 1	Yax	Carton	Factor	TRFMuh	iplier	Min Nori Fact	nalization or	Ergenver	Ine g <u>ence</u>	Accelen	atron uty	trai
CODE ¹ CODE ¹	Lower B	oundı oundz	Upper Upper	Bound i Bound z			-			Criter				Cons
ODE 3	Lower B	ound 3	Upper [Bound 3							-		I	Da
						I		-	-	_				regu
COE	LowerBo	UndNEXTO	UpperBo	und NFKEQ	: 	1						•	- 4	
IMODE	NORMOD	-	· · · · · · · · · · · · · · · · · · ·	' 			 	-		 	lutter	 Constr	i ant Da	ta.
TRFIN	tial	TRF M	lax	C ^{Cutoff}	Factor	TRF ^{Mult}	ipher	Min Norn Facto	alization	Ja	Capabit	ity Not	Availat	ole)
 F	ollowin	g 3 car	ds are	the NE	USUMT	ptimiz	er con	trolca	ds A	or def	rent of	timize	r, cont	rol
PRINT	MAXSTER	MAYRSF	MAXODM	JSIGNG			~y 02	STE		Initiali	Fransition	0		0 11
STEPM	ix X	STEPM	X (init-	RAC	_					Poin	<i>t</i>	rower!	<u>-actor</u>	<u>Coefficien</u>
	iprier						_ <u></u>							

APPENDIX C

Examples

Three examples are given to illustrate input data preparation for various features of the ACCESS-2 computer program.

(1) 25 bar space truss

static constraints only mechanical and thermal loads

(2) 18 element wing box

static constraints and frequency constraint mechanical loads only aluminum alloy

(3) 18 element wing box static constraints mechanical and thermal loads composite material skin and aluminum webs

ł

Loading

Grıd	Temper	rature	P	x	Р У		P z			
Point	К	°F	N	lbf	N	lbf	N	lbf		
1	350	170	4448	1000	44 480	10 000	-22 240	-5000		
2	350	170	4448		44 480 、	10 000	-22 240	-5000		
3	311	100	2224	500						
4	311	100								
5	311	100								
6	311	100	2224	500						
7	275	35								
8	275	35								
9	275	35								
10	275	35								

Fig. C-1 25 Bar Truss Ref: NASA TND 7965 August 1975

Example 1 Data Card Image (1)

25 BAR TRUSS DESIGN VARIABLES = 8 LOADING -THERMAL AND MECHANICAL LUADS C \mathbf{n} -0.2500E2 0.2000EJ 0.0000E0 0.2500E2 0.2000E3 0.000E0 -0.3750E2 0...375 0E.2 0.1,00.0E3. 0.3750E2 0.3750E2 3.1000E3 0.3750E2 -0.3750E2 0.1000E3 -0.3750E2 0.1000E3 -0.3750E2 -0.1000E3 0.1000E3 2.0.000EQ 0.1000E3 0.1000E3 0.0000E0 3.0'00 OE0 0.1000E3 -0.1000E3 -0.1000E3 -0.1000E3 3.0000E0 1; TRUSS -1 NN NN M M M M M - 1 -1 4| 5| ŧ --- 1 - 1 7 -1 4! -1 _3 - 1 •----1 ~ 1 -1 .5 -1 - 1 -1 - 1 1.6 .6 6! Δ = 1 7 7 -1 - 1 - 11

URIGINAL PAGE IS OF POOR QUALITY

Example 1 Data Card Image (2)

	20 5 21 6 22 6	10 9 10 7	20 21 22 23	7 7 7 7 8 8		-1 -1 -1 -1			
	24 5 25 4 0.2000E1	9 8 0.2000E1	24 25 0.2000E1	8 8 3 8 3.2000E1	0.2'000E 1	-1 -1 0.2000E1	0.2 00CF1		
-	0 • 0 1 0 0E 0	0.0100E0	0.0100E0	0.0100E0	0.0100E0	0.0100E0	0.0100E0	ILOWG	* ************************************
	0.0100E8 0.1000E8 0.1000E8 0.1000E8 0.1000E8 0.1000E8 0.1000E8 0.1000E8 0.1000E8 0.1000E8		0 • 1 01 0E 0 0 • 1 01 0E 0 0 • 1 01 0E 0 0 • 1 01 0E 0 0 • 1 01 0E 0 0 • 1 01 0E 0 0 • 1 01 0E 0 0 • 1 01 0E 0 0 • 1 01 0E 0	0.128E-4 0.128E-4 0.128E-4 0.128E-4 0.128E-4 0.128E-4 0.128E-4 0.128E-4 0.128E-4 0.128E-4 0.128E-4	-0.4000E5 -0.4000E5 -0.4000E5 -0.4000E5 -0.4000E5 -0.4000E5 -0.4000E5 -0.4000E5 -0.4000E5	0.4000F5 0.4000E5 0.4000E5 0.4000E5 C.4000E5 C.4000E5 0.4000E5 0.4000E5			.
-	4 1 2 3 0 0	0.1000E4 0.0000E0 0.5000E3 0.5000E3	- 0.1000E5 0.1000E5 0.0000E0 0.0000E0	-0.5000E4 -0.5000E4 0.0000E0 0.0000E0		, i, , , , ,		INERTL	·
-	25			1				- Literican	· ········
-	1 1 2 1516	3 4 17 18	5 6 .19 20	7 8	9 10 23 _24	11 12 _25	13 14	· · · · · · · · · · · · · · · · · · ·	
_	1 2 4 4 0.1700E3	2 2 4 4 0.1350E3	2 2 4 4 0.1000E3	2 2 4 4 0.6,750E2	4 4		3 4	IFLIGH	
_	0 • 1 0 0 0 E 0 0 0	0.6000E0	1.0000E0	1.2000E0	DISPLACEM	ENT CONSTR	AINTS	NMASS	
_	0°1000E0 0°000E0	0.5000E0	0.1000E1	1.2000E0	0.11590E5			3 1 1	
-	0 12 0.0010E0 1.0000E0	2, 5 0.0010E0 0.1200E1	0.3000E0	0.100E-14	0.1000E3	0.1000E0	0.5000E0	0.1.000E0	
-		 5 -20			45 50	55 60	25 70	15 30	

Lumped Masses: 222.4 Kg m/sec² (50 lb)
at nodes 4 & 6
Material properties: E = 68.9x10⁹ Pa, N/m² (10x10⁶ psi)

$$\rho = 2800 \text{ Kg/m}^3$$
 (0.1 lbs/in.³)
 $\nu = 0.3$
 $\sigma^{U} = |\sigma^{L}| = 6.89x10^7 \text{Pa}, N/m^2$ (10000 psi)

Fig. C-2 Wing Box with Isotropic Panel

ORIGINAL PAGE IS OF POOR QUALITY

Constraints:	Side	:	$A^{L} = 0.645 \text{ cm}^{2} (0.1 \text{ m}^{2})$
			$t^{L} = 0.0508 \text{ cm} (0.02 \text{ ln})$
			$\tau^{\rm L} = 0.0508 \text{ cm} (0.02 \text{ ln})$
	Stress	:	$\sigma^{\rm U} = \sigma^{\rm L} = 6.89 \times 10^7 P_{\rm a}, \ N/cm^2$
			(10,000 psı)
	Displacements	:	$U_{zk}^{U} = U_{zk}^{L} = 5.08 \text{ cm} (2.00 \text{ ln})$
			nodes 3,4,5,6,7.
	Frequency	:	f_1^L = 25 cycles/sec
	Loads	:	Load Condition 1
			$P_1 = 22240 \text{ N} (5000 \text{ lbs})$
			$P_2 = O(N) \qquad (0 \text{ lbs})$
			Load Condition 2
			$P_1 = O(N) \qquad (0 \text{ lbs})$
			$P_2 = 44480 \text{ N} (1000 \text{ lbs})$

1	,		ł i	l		1	ļ ŧ		<u>ا</u>	i	ł	1
	_E ME N <u>FR1 F</u>	T WIN INDH	G HOX	NT_DE	SIGN	VARIA	BLES '=	16				
2 LCA Stres Two L	AD CO 5S, D LUMPE	NDITI ISPLA D MAS	DNS CEMEN SES	T, FG	EQUEN	CY AN	D SIDE	CON	STRAI	NTS	l	
475	225	a a					0					
2 3 4 5		0.1	000E3 000E3 000E3	0.0	0000E2 0000E2 0000E2	0.8 0.8 0.8 0.8	000F1 000F1 000F1		ł	· ·	r ,	۱ ۱
6' 7 1	1	0 • 1 0 • 1 1	000E3 000E3 1	0.1 0.1	400E3 910F 3	0.8	000F1 000E1			1		
1 1! 2 3	1	3,634	; 3 5 1				1 2				- 1' - 1 - 1	TRUSS
4) 5) 2, 1	4 6	67	4		45	4 5 5	4' 5 6'		6	-	- 1 - 1 - 1	CST
2, 3, 4 5,	4 3 6 5		3 1 9 6 3 3			6 7 7 8	6 7 7 8		6 7 7	.l •i •	- 1, - 1 - 1 - 1	
4	1	5	3		1	9	9 10		10		- 1	SSP
			A REAL PROPERTY AND ADDRESS OF ADDRE									

_ __

Example 2 Data Card Image (1)

3 2	4	3	11 11	1 11	- 1	ļ	[
4, 4	6	4	12 12	12	- 1		
5 6	7	5	13 13	13	-1		
6j3			14 14	14	- 1		
7 5	6		15 15	15	-1		
8 5	7	8	16 16		-1		
0.9800±0	0.9800ED	0.9803E0	2+9800E0	0.9800E0	0 • 1 960E C	7.196050	
0.1950-0		<u> 0.1960-0</u>	0.196050	0.1950E0	<u> 0_01960EC</u>	<u> 6.1960E0</u>	
0.1960E0	0.190050						
0.1000#0	0.100000		0.100020	: 0°1000E0.	0.0200-0	0 • 0200E0	1
0.020010		0.0500-0	0.050050	1 0.0200E0	0.01500F0	0 0.7,200E0	
<u>0.0200F0</u>		0 100050	2 1 28 5		0 100055		·····
					0 100000	2	
		0.100020	0.1285-4		0.1000		
					0.100025		1
			<u> </u>			¦∱=	
	a zhooso				0.100075	· ' '	
			0.1205-4			2	
			0 1/000004				
	0.3000000		0 1 2 2 5 4	-0.1000-5) 	
						Y • •	
0 100050			0.1205-4				
			0 120574		0.1000-5		
			1 <u>205_4</u>				
0 1000-0	0.3000E0		0,1,200-4			· · · ·	I I
0.1000201	0.300050	0.100050	0 1095-4			1	•
0 1000 0			0+1200-4			1	
<u></u>	<u> </u>		201205-4	-0.100055	0.1000-3		
	0.00000	0.000050	3 600050				
-					l	1 1	
	0.00000000	1 asologocol					n har and h
		╁╍╍╍╴╸┼╶╌─── ┟				······································	
				1 1			freign
	0.500052				ļ		
4	0.500052			,			
0.100050	0.500050	1.0000501	1.200050			<u></u>	
V.1,000.0	0.0000000	1.000020	**************************************	1 1			
o Jonorol	0.600050		1. 200050	1.00.050			
7 3	2	-0.200051	0.2000E1				
	2	-0.2000E1	0.200061				
	2		0.200001				
6 3	2	-0.200051	0.200001	1 1	ł		t l
7 3	2	-0-200061	0.2000E1				
						┟╍╍╌╍╍╸┟╌╍╍╌╸╬	
3 2	2						
	0.600050	1,0000000	1,2000F0	0.100055			
1 0							
0 • 1 00 0E 0	0.600050	1.0000000	1.2000501	0.010050	0.005050	┝╸╌╺╸┢━━━━╋	·
2 2.4	57524 0.5	DODES					
	0					1	
0 / 15	5						
0.0010-0	0.0010F0	0.303050	0.100 = -14	0.1000F3	0.1000F0	2.500050	0.100060
1,0000E0	0.1200E1						
2			•	l i		I	I
					-		
5 15	చ ఎం	25 30	75 do	45 50	55 60	35 70	75 80
							-

Example 2 Data Card Image (2)

OF POOR QUALITY

Example 3

 $\bigcirc \text{ Truss} \\ \bigtriangleup \text{ cst} \\ \Box \text{ ssp}$

Numbers within Symbols Indicate Element No. Numbers at Element Junctions Indicate Node No.

Fig. C-3 Wing Box with Composite Panel

ORIGINAL PAGE IS OF POOR QUALITY

Composite Mate	erial	:	EL	=	1.448×10^{11} P , N/m ² (21x10 ⁶ ps1
Propertie	s		E_{T}	=	1.172x10 ¹⁰ P,N/m ² (1.7x10 ⁶ psi
			${}^{\rm G}_{\rm LT}$	=	4.482×10^9 P , N/m ² (0.65×10 ⁶ ps
			$\nu_{\rm LT}$	=	0.21
			ρ	=	1549 K _q /m ³ (0.056 lbs/1n ³)
			αL	=	-3.779x10 ⁻⁷ /°K (21x10 ⁻⁶ /°F)
			$^{\alpha}\mathrm{T}$	-	2.8797x10 ⁵ /°K (16x10 ⁻⁶ /°F)
			ε _L t	י ==	0.008571 m/m (0.008571 in/in)
			$\epsilon_{\rm L}^{\rm c}$	=	-0.008571 m/m (0.008571 in/in)
			^ع ت t	≟	0.004706 m/m (0.004706 in/in)
			$\epsilon_{\rm T}^{\rm F}$	=	-0.017647 m/m (-0.017646 in/in)
			$v_{\rm LT}$	=	0.018462 (0.018462)
Constraints:	Side	:	AL	=	$0.645 \text{ cm}^2 (0.1 \text{ ln}^2)$
			t¦	=	0.0508 cm (0.02 in)
			$\tau^{\mathbf{L}}$	=	0.0508 cm (0.02 ln)
	Stress a strair	and 1:	As g	gıver	1 in the Material Properties
Disp	placement	::	u ^U zk	= u	$\frac{L}{2k}$ = 5.08 cm (2.00 ln)
					at nodes 3,4,5,6 and 7
Tooday					

Loads:

Load Condition 3 $P_1 = -22240 \text{ N} (5000 \text{ lbs})$ $P_2 = O(N)$ (0 lbs) Load Condition 4 $P_{1} = O(N)$ (0 lbs) $P_2 = -44480 \text{ N} (10000 \text{ lbs})$

Thermal Loads: All load conditions 311°K (100°F)

WING BOX	WITH SKI	IN MADE	UP OF	COMP	OSITE BLES	MATE =_22	ERIALS		
4 LOAD CO STRESS, D TWO LUMPE	NDITONS ISPLACE D MASSES	TIYPE MNT, AN 5. Hig	DE LOA D SIDE H STRE	DS = CONS NGTH	MECHA TRAIN GRAPH	NICAL TS ITE E	AND POXY	,THERM SKIN	
4 2	0 4	1 13	1 0	 0 1 6	0		L 0		
5 0 	20 	8 DEO O •_ DE3 O •-	0000E0	0.8	00.0E2				· · · · · · · · · · · · · · · · · · ·
3 4 5	0.0000	DEO 0. DE3 0. DE0 0.	7000E2 7000E2 1400E3	$0.1 \\ 0.8 \\ 0.1 \\ 0.1$	000E2 000E1 000E2				
6 7	0.1000	DE3 0. DE3 0.	1400E3 1900E3	0.8 0.8	000E1 000E1				
		- i		1		- 		¦	TRUSS
1 1 2 3 <u>3 2</u>	3 5 4		2 3	2 3	3		2	-1 -1 -1	
4 4 5 6 3	6 7		4 5'	4 5	4 5		45	-1 -1	CSTOR
$\frac{1}{2!}$ 1	2 2 2	4 4	. 1 2	6 6 6	66				
4 1 54	2	4	<u>3</u> 	б б	6 6		-4	- 1 	
7. 4 8 4	333	1	23	6 6	6 6		-3	-1 -1 -1	
<u> </u>	4	- 6 6 6	4 5 5	- <u>7</u> 7	<i>.</i>] 7 7	<u> </u>	-2		
$ \begin{array}{cccc} 12 & 3 \\ 13 & 6 \\ 14 & 6 \end{array} $	4 5 5	6 3 	6 4 5	7 7	7 7 7		-4 -1 -2	-1 -1 -1	
15 6	5	3	5	7 7	7 7		-3	-1 -1	

Example 3 Data Card Image (1)

68

ORIGINAL PAGE IS

Example 3 Data Card Image (2)

	17 5 18 5 19 5	6 7 6 7 6 7	7	8 8 8 8	-1 -2 -3	-1 -1			
-	20 5	67		<u>8</u> 8		- i		SSP	
_		5 5	2	10 10 11 11		-1: -1' -1'			_
	4 4 5 6	67	4	12 ¹ 12 13 13 ¹	9	- 1 - 1			***
-	7 5 8 5		7 7	15 15 15 15 15 15 15 15 15 16 16 16	12	-1, -1,			* ~ ~ ~ ~ ~
_	6 1 1 2 3	3	1	9 9, 10: 10	6 7	-1		TSP	~ ~
_	3 V 4	4	3	11 ¹ 11 12 12	8	-1, -1			
_				$ \begin{array}{ccccccccccccccccccccccccccccccccccc$		- 1' , 1!	- 1		
	8 5 0•9800E0	7 0.9800E0 0.1960E0	8 0.9800E0 0.1960E0	16 16 0.9800E0	13 0.9800E0	-1 0.1960E0 0.1960E0	0.1960E0 0.1960E0		
	0 • 1960E0 0 • 1000E0 0 • 0100E0	0.1960E0 0.1000E0 0.0200E0	0.1000E0 0.0220E0	0.1000E0	0.1000E0	0.0100EC	0.0100E0 ¹		
ő-	0.0200E0 0.1000E8 0.1000E8	_0.0200E0	0.1000E0	0.128E-4	-0.1600E5	0.1600E5			
-	0.1000E8 0.1000E8		0.1000E0	0 • 1 28E-4 0 • 1 28E-4	-0.1600E5	0.1600E5 0.1000E5			
	0 • 1000E8 0 • 1000E8	0.3000E0 0.3000E0	0.1000E0 0.1000E0 0.1000E0	0.128E-4 0.128E-4 0.128E-4	-0.1600E5 -0.1600E5 -0.1600E5	0.1600E5 0.1600E5	1		
-	0.1000E8 0.1000E8 0.1000E8	0.3000E0 0.3000E0 0.3000E0	0.1000E0 0.1000E0 0.1000E0	0.128E-4 0.128E-4 0.128E-4	-0.1600E5 -0.1600E5	0.1600E5 0.1600E5			
-	0 • 1000E8 0 • 1000E8 0 • 1000E8	0.3000E0 -0.3000E0 0.3000E0	0.1000E0 0.1000E0 0.1000E0	0.128E-4 0.128E-4 0.128E-4	-0.1600E5 0.1600E5 0.1600E5	0.1600E5	j		
	21.0000E6 1.0000E0	1.7000E6 0.0000E0 0.0000E0	0.5500E6 0.0000E0	0.2100E0 .08571E0	0.0550E0 006571E0	-0.2100E-6 0.4706E-2	16.0000E-6 -1.7647E-2		
-	21.0000E6 0.7071E0	1.7000E6 0.7071E0	0.6500E6	0.2100E0 008571E0	0.0560E0 008571E0	-0.21'00E-6 0.4706E-2	16.0000E-6 -1.7647E-2	•	
_	21.0000E6 -0.7071E0	0.7000E5- 0.7071E0	0.0000E0 0.0000E0	-0.2100E0 -0.3571E0	008571E0	-0.2100E-6 0.4706E-2	16.0000E=6 -1.7647E-2		
	1.8462E-2 21.0000E6 0.0000E0	0.0000E0 1.7000E6 _1.0000E0	0.0000E0 0.5500E6 0.000E0	0.2100E0 .002571E0	0.0000E0 0.0560E0 	0.0000E0 -0.2100E-6 _0.4706E-2	16.C000F-6 =1.7547E-2		
	1.8462E-2 1 1 7	0.0000E0 1 1 0.0000E0	0.0000E0	0.0000E0 0.5000E4	0.0000E0	0.0000E0,	Ť		
-		-0.0000E0	0.0000E0 0.0000E0	- 0,1000E5 -0,5000E4		·	····· ········		
	o o			38 x 000C)	!		i 1	INERTL	

5 1 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 8 5 5 7 8	
15 16 1 2 1 1	6 17 18 2 3 4 1 1 1	19 20 5 6 7 8 1 1 1 1	
			star enverse star en en en en en en en en en en en en en
0.1000E			
2	0.5000E2 0.5000E2	1.000050 1.200050	
5 0.1000E(3	0 0.6000E0 0 3 2 -0	0.1000E1 1.2000E0 0.2000E1 0.2000E1	
567	3 2 -0 3 2 -0 3 2 -0	0.2000E1 0.2000E1 0.2000E1 0.2000E1 0.2000E1 0.2000E1	
3 0.1000EC 0		1.0000E0 1.2000E0	0.1000E5 NO FREQUENCY CONSTRAINTS
0 1 0 0010EC 1 0000EC	2 5 0.0010E0 0 0.1200E1	0.3000E0 0.100E-14	4 0.1000E3 0.1000E0 0.5000E0 0.1000E0
	· · · · · · · · · · · · · · · · · · ·		

Т

Example 3 Data Card Image (3)

APPENDIX D. Output for 25 Bar Space Truss Example

25 BAR TEUSS DESIGN VAFIABLES ≈ 8 LUADING -THERMAL AND MECHANICAL LOADS a. 77 1 • . 92 1

.

<u>``</u>			ATION BY NEASUME.	יפעוינייניסי				
	····	ANALYSIS PRINT (JUT CONTROL = 2					
		CESIGN IN LINKER	SIZING VARIAELE	SPACE				
		NUMBER OF NODI C			······································			
۳ م		NUMBER OF NODES	ELEMENTS 2 VAPIABLES 2	5				
	<u> </u>	NUMBER OF BOUNDA NUMBER OF ISOTRO NUMBER OF ORTHOT	RY NODES PIC MATERIALS ROPIC MATERIALS	4 B O			<u> </u>	
	TPUSS CST ISOTROPI	CST 35 C CTTHOTROPIC	षट्टव	TSP	THD	T+-D	180	ТВР
FLEMENTS LINKED VARIABLES	25 25 25							
	NODE NUMBER	X	Y		2			
	1	0.0	-25.0000		200-0002			~~~
	2	0.0	25.0000		200.0000			
	4	37.5000	37.5000		104.0000			- G
	<u> </u>	-37.5000	-37.5000		100-0000			07
ý Ú	7	-100.0000	100.0000		0+0			QF
64	<u>я</u> ,	100.0000	100.0000		0.0			20 [-1
	10	-100,0000	-100.0000		0.0	_		QUP
								<u> </u>
		-						LILA SI B
		DISPLACEMEN	IT BOUNDARY CONDET	IONS				
	NOCE NC.	X Y Z	FRES	<u>201960.01</u> Y	SPLACE FUT	2		
	7	1 1 1	0.0	0.0		*~_=		
	<u> </u>	<u>111</u>	0.0	0.0	0.0			
	10	<u>i i i</u>	0.0	<u></u>	9.0			
		<u> </u>	<u>BED. 0 = 1 4 EE. 1 ≠ EI</u>	XE D				

ND .	N1	N2	N3	N4	GROUP		INITIAL	LOW.BD	Obe*BD	GF DUP	C HHL≠	
TRUSS	S ELEME	ENTS			 -							
1							2.00000	<u> </u>				
3	, i	3			3		2.000000	0.010000	0.010000	2	-1	
4	ī	ธี			4		2.00000	0.110000	0.010000	2	- i	
5	<u>2</u>	<u>6</u>			5		2.200000	0.010000	0.210000	<u> </u>		
7	2	4			27		2.000000	0.010000	0.010000	3	- 1	
é.	r 1	3			é		2.000000	0.010000	0.010000	3	-1	
9	i	6			9		2.000000	0.010000	000010 0	3	i	
10	3	6			10		2.000000	0.010000	0+010000	(-1	
12	4 3	5			12		2.000000	0.010000	0.010000	*	-1	
13	5				. 13		2. 200000	0.010000	0.010600	<u> </u>	- 1	
14	3	10			14		2.000000	0.010000	0.010000	t	-1	
15	6	7			15		2.000000	C.C1C000	0.010000	¢	- 1	-
10	4	9			10		2.000000	0.010000	0.010000	n 6	- 1	
18	4	7			18		2.000000	0.010000	202010202	7	<u> </u>	*
19	Ė	8			19		2.000000	0.010000	0.010000	7	- 1	
20	5	10			20		2.000000	0.010000	0.010000	7	- 1	
22	6				21		2.000000	0.010000	0.010000			·····
23	3				23		2.000000	0.010000	0.110000	ς μ	- 1	•
24	5	ġ.			24		2.000000	0.010000	0.010000	લ	-1	~ _
25	<u> </u>	<u> </u>			25		2.000000	0.0000	00		<u> </u>	
*	0=N01	N NEGA Th upp	TIVITY E <u>r and</u>	CNLY LOWER BC		FR 350 105		·				
) #	0=N01	N NEGA TH UPP	TIVITY ER AND	CNLY LOWER BC	I≞CPP UNDS	MATERIAL C	ONSTANTS - IS	DIROFIC MATINIAL	5			
· *	0=\01 2=001	N NEGA TH UPPI GROUI		CNLY LOWER BO YOUNG		MATERIAL C	ONSTANTS - IS SPECIFIC WEIGHT	THE CHAL	5 	THYS11		
۰ ۲	0=10 2=001			YOUNG *	S P	MATERIAL C UISSON'S PATIO 0.0	ONSTANTS - IS SPECIFIC WEIGHT 0.101000		5 	THYSIL 1. STU 1000.0		
¥.	0=\0 2=U0	GROUI		YDUNG*	S P 5	MATERIAL C UISSON'S PATIO 0.0 0.0	ONSTANTS - 15 SPECIFIC WF.IGHT 0.101000	<u>THE CAL</u> <u>THE CAL</u> <u>C.00001230</u> C.00001230	5 	TttsIt 1, 574 ,4 10903.0 40030.0		
	0=\0 2=U0			YDUNG* <u>YDUNG*</u> <u>MODULU</u> 0000000 000000 000000	S P 5 0 0	MATERIAL C UISSON'S PATIO 0.0 0.0 0.0	SPECIFIC SPECIFIC WEIGHT 0.101000 0.101000 0.101000	DIROFIC MAT-HIAI THE CAL EXPANSION C.00001280 C.00001280 C.00001280	5 	TtrsIt <u> </u>		
, ,	0=\0 2=UGI		PIVITY PAND	YOUNG • <u>YOUNG •</u> <u>MODULU</u> 0000000 • 0000000 • 0000000 •	S P 5 0 0 0	MATERIAL C PATERIAL ONSTANTS - IS SPECIFIC WEIGHT 0.101000 0.101000 0.101000 0.101000	DIEQUIC MATINIAL THE ANAL EXPANSION C.00001280 C.00001280 C.0001280 C.0001280 C.0001280	5 	Ttt'sIt <u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u> </u>			
	0=\0 2=U01		FIVITY R AND 1 1 2 1 3 1 4 1 5 1 6 1	YOUNG YOUNG MODULU 0000000 0000000 0000000 0000000 000000	S P S P 0 0 0 0 0 0 0 0	MATERIAL C PATIO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ONET DEFCIFIC WEIGHT 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000	DIEQUIC MATINIAL THE REAL EXPANSION C.00001280 C.00001280 C.00001280 C.00001280 C.00001280 C.00001280 C.00001280	5 	11 11 11 1, 514 35 10900 0 40900 0 40900 0 40900 0 40900 0 40900 0 40900 0		
, , 	0=\0	R DUI	FIVITY R AND 1 1 1 1 1 1 1 1 1 1 1 1 1	YOUNG YOUNG MODULU COODCOO 0000COO 0000COO 0000COO 0000COO 0000COO 0000COO 0000COO 0000COO 0000COO	S P S P S 0 0 0 0 0 0 0 0 0	MATERIAL C PATIO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ONSTANTS - IS SPECIFIC WEIGHT 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000	<u>THE RAL</u> <u>THE RAL</u> <u>THE RAL</u> <u>THE RAL</u> <u>C.00001280</u> <u>C.00001280</u> <u>C.00001280</u> <u>C.00001280</u> <u>C.00001280</u> <u>C.00001280</u> <u>C.00001280</u>	5 - CUMPPES31Vc <u>1.3TRCS</u> 2000.0 -40000.0 -40000.0 -40000.0 -40000.0 -40000.0 -40000.0 -40000.0	Tt Moli 1 10903 - n 40903 - 3 40903 - 3 40900 - 0 40900 - 0 40900 - 0 40900 - 0 40900 - 0		
, , OF	0=\0		TIVITY R AND 1 1 2 1 3 1 4 1 5 1 6 1 7 1 9 1	YOUNG YOUNG MODULU COODOCO 0000COC 0000COC 0000COC 0000COC 0000COC 0000COC 0000COC 0000COC 0000COC 0000COC 0000COC 0000COC 0000COC 0000COC	S P S P S 0 0 0 0 0 0 0 0 0	MATERIAL C UISSON'S PATIO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	CONSTANTS - IS SPECIFIC WFIGHT 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000	DIENFIC MAT-HIAI THF CAL (x) 4N JION C.00001230 C.00001230 C.00001280 C.00001280 C.00001280 C.00001280 C.00001280 C.00001280	5 - - - - - - - - - - - - -	Ttt's II 10903.0 400030.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0		
, , OF P	0=\0		FIVITY R AND 1 1 1 1 1 1 1 1 1 1 1 1 1	YOUNG YOUNG MODULU 0000000 0000000 0000000 0000000 000000	S P S P 0 0 0 0 0 0 0	MATERIAL O PATIO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	ONETANTS - IS SPECIFIC WEIGHT 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000	DIROFIC MATINIAL THP 20AL (XPANJION C.00001290 C.00001290 C.00001290 C.00001290 C.00001280 C.00001280 C.00001280 C.00001280	5 - CUMPPES 31Vc <u>1.3TRCS</u> 	Tt tro It 10000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0		
* ORIGINAI OF POOR	0=\0	GROUI	FIVITY R AND 1 1 1 1 1 1 1 1 1 1 1 1 1	YOUNG YOUNG MODULU 0000000 0000000 0000000 0000000 000000	S P S P 0 0 0 0 0 0 0	MATERIAL O UISSON'S PATIO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	CINE T SPECIFIC SPECIFIC WEIGHT 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000	DIEOFIC MAT HAI THE HAI (XPANJION C.00001280 C.00001280 C.00001280 C.00001280 C.00001280 C.00001280 C.00001280 C.00001280 C.00001280	5 	Tf Moli 1, 5TV 3 10900.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0		
, OF POOR Q		GROUI	FIVITY R AND 1 1 1 1 1 1 1 1 1 1 1 1 1	YOUNG YOUNG MODULU 0000000 0000000 0000000 0000000 000000	S P S P 0 0 0 0 0 0 0 0	MATERIAL C UISSON'S PATIO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	SPECIFIC SPECIFIC WEIGHT 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000	DIROFIC MAT HIAI THE (MAL FXPAN JION C.00001290 C.00001290 C.00001290 C.00001290 C.00001280 C.00001280 C.00001280 C.00001280 C.00001280	5 	If t's It 10000 n 40000 n		
* ORIGINAL PAG			FIVITY R AND 1 1 1 1 1 1 1 1 1 1 1 1 1	YDUNG MODULU COOCOCO COOCCCO COOCCCO COOCCCO COOCCOCOCO COOCCOCOCO COOCCOCO COOCCOCO COOCCOCO COOCCOCOCOCO	S P S	MATERIAL C UISSON'S PATIO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	SPECIFIC SPECIFIC WEIGHT 0.10100 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000	DIROFIC MATHAL THE WAL EXPANJION C.00001230 C.00001230 C.00001230 C.00001230 C.00001230 C.00001230 C.00001230 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.00001280	5 	If t's It 10903.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0		
* ORIGINAL PAGE OF POOR QUALIT			FIVITY R AND 1 1 1 1 1 1 1 1 1 1 1 1 1	YOUNG YOUNG MODULU COOCOCO OOOCOOOC	S P S	MATERIAL C UISSON'S PATIO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	SPECIFIC SPECIFIC WEIGHT 0.10100 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 0.101000 CONDITI LIMP'D LOAU AT	DIROFIC MATHAI THE WAL EXPANJION C.00001230 C.00001230 C.00001230 C.00001230 C.00001230 C.00001230 C.00001230 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0000000 C.0000000 C.00000000 C.0000000000	5 	If t's It 10900.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0		
• ORIGINAL PAGE IS OF POOR QUALITY			FIVITY R AND 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	YOUNG YOUNG MODULU COOCOCO COOCOCOCO COOCCOCO COOCCOCO COOCCOCO COOCCOCO COOCOCOCO COOCOCOCO COOCOCOCO COOCOCOCOC	S P S P S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MATERIAL C UISSON'S PATIO 0.0 0.0 0.0 0.0 0.0 0.0 0.0	SPECIFIC SPECIFIC WFIGHT 0.101000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.100000 0.10000000 0.10000000000	DIROFIC MATHAI THE WAL EXPANJION C.00001280 C.00001280 C.00001280 C.00001280 C.00001280 C.00001280 C.00001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.000000 C.0000000 C.0000000 C.0000000 C.0000000 C.00000000 C.00000000 C.00000000 C.0000000000	5 	If t's It 10900.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0		
• ORIGINAL PAGE IS OF POOR QUALITY			rivity <u>R AND</u> 	YOUNG YOUNG MODULU 0000000 0000000 0000000 0000000 000000	UNDS S P S P 0 0 0 0 0 0 0 0 0 0 0 0 0	MATERIAL C UISSON'S PATIO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	SPECIFIC SPECIFIC WEIGHT 0.10100 0.101000 0.10000 0.10000 0.10000 0.10000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000000	DIROFIC MAT HIAI THE (MAL (XPAN)ION C.00001280 C.00001280 C.00001280 C.00001280 C.00001280 C.00001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0001280 C.0000000 C.0000000 C.0000000 C.0000000 C.0000000 C.00000000 C.00000000 C.00000000 C.00000000 C.00000000 C.00000000 C.00000000 C.000000000 C.0000000000	5 	If the It 1, STH 35 10900.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0 40000.0		

(- J-

PRESSURE LOAD

ND PRESSURE LOAD SPECIFIED

-- ⁻⁻ --

				GRAVITY	LOAD				
	LOAD_C	CADITION NO	MAGNITUDEL	G)		DIRECTION.			
		Q	NO GRAVITY LO	AD			~		
				THERMAL L	() 4 D	· · · · · · · · · · · · · · · · · · ·			<u>. </u>
	I			тне	RMAL LCAD G	ROUP NUMBE			······································
	ELEMENT				LOAD COND	ITIONS			
TY	PE NUMBER	1 2	3 4 5	ć 7 8	9 10	11 12	13 14 1	5 16 17	18 IG 20
4.67-		1							
		222							
	i	<u> </u>							
:		22	,						F P
		3		<u></u>	<u>-</u>				OH NA
		<u> </u>	·····						~
	1 15 1 16 1 17	<u>۸</u> ۸							JUA
		4					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	22	<u> </u>							
	1 23 1 24 1 25	4 4 4							

N

	INITIAL TRUNCATION FACTOR 2.1000	
	PASIS CUTOFF FACTOR 1,0000	
	MULTIPLIER FOR TRE UPDATINC 1.2003 Minimum Normal (zation factor	
······		<u> </u>
	SIDE CONSIGNING SECCIFICATIONS AND GIVEN IN THE CENTRE IN ALL WITH	
	DISPLACEMENT CONSTPAINTS	·
	NO DISPLACEMENT CONSTRAINTS .	
	SLOPEZATIVE DISPLACEMENT CONSTRAINTS	
	NO SLOPE CONSTRAINTS	
	STRESS/STRAIN CONSTRAINTS	
······································	INITIAL TRUNCATION FACTOR 0.1000 MAXIMUM TRUNCATION FACTOR 2.6000	
	BASIS CUTOFF FACTOP 1.0000 MULTIPLIER FOR TRE UPDATINC 1.2000	
	MINIMUM NORMALIZATION FACTOR	
	STRAIN C.100000-02	
	NO EULER BUCKLING CONSTRAINTS IMPOSED	<u> </u>
9	ELEMENT TYPE 1	
<u>6</u>	ALL ELEMENTS ARE CONSTRAINED BY BOTH LOWER AND UPPER BOUNDS	
	NEWSUMT OPTIMIZER CONTROL FARAMETEPS	
· }		
	MAX. NO. OF STAGES 12	
	MAX: NJ. OF RESPONSE SURFACES / STAGE 2 MAX: NJ. OF ONE DIM. MIN. / PESE SURFACE 5	
	DEFINITION OF FEASIBLE REGION SIGN O	
	DIMINISHING RETURN CRITERIDN AMENG 51AGES 0.1030D-02 DIMINISHING RETURN CRITERIDN AMENG 0.2.46	
	FESPONSE FACTOR DECREASE PATIO C.3000D+30	
	MIN, LIMIT OF PESPONSE FACTOR 0,10000-14 Max, step size Allowed in a sincle stage 0,10000-13	
	INITIAL ESTIMATE OF TRANSITION FOINY	
	TRANSITION POINT COFFFICIENT - F 0.5000D+00 TRANSITION POINT COFFFICIENT - C 0.1000+00	
	STEP SIZE MODIFICATION FACTOR 0+1000D+01	
	STEP SIZE MINIMUM ALLUWABLE	_

- putinesi

2

TRUSS ELEMENT CATA ELEMENT LENGTH DIRCX DIRCY DIRCZ E/L

CENSTRAINT IDENTIFICATION CODES

-

....

.

.

CONSTRAINT TYPE -10001 -10011 +10021	1 -10002 -10012 -10022	25 CCN -10003 -10013 -10023	ISTRAINTS IN -10004 -10014 -10024	THIS TYPE -10005 -10015 -10025	- 10006 - 10016	-10037 -10017	-10008 -10018	-10009 -10019	-10010	
CONSTRAINT TYPE	2	0 CCN	ISTRAINTS IN	THIS TYPE						
CONSTRAINT TYPE	3	0 C.C.N	STRAINTS IN	THIS TYPE						
CONSTRAINT TYPE -10010001 -10010096	4 10010001 10010006	50 CCN -10010002 -10010007	ISTRAINTS IN 10010002 10010007	THIS TYPE -10010003 -10010008	100 1000 3	~10010004	10010004	-10010005	10010005	<u> . </u>
-10010016 -10010021	10010016	-10010017 -10010022	10010017 10010022	-10010018	10010013 10010018 10010023	-10010014 -10010019 -10010024	10010014 10010019 10010024	-10010015 -10010020	10010015 10010020 10010025	
CONSTRAINT TYPE	5	O CCN	STRAINTS IN	THIS TYPE						
CONSTRAINT TYPE	6	0 CCN	STRAINTS IN	THIS TYPE						
TCTAL NUMBER CF CC	INSTRAINTS	75								
97										
						·····				
				···					·····	·
								P [G		·
								NAI OR		
<u> </u>		<u>.</u>			·····			जु छु		
								Ā		
••• •• <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			·····			<u> </u>		<u>N 20</u>	<u> </u>	

•

Moore Sus ness

AGE NO . 1 APP	CXIMATE PROD	LEM GENEPATO	R						
CURRENT MEMBER S	I Z C								
MEMBER TYPE NUM 0.2000D+01 0.2000D+01 0.2000D+01	MEEP 1 0.2000D+01 0.2000D+01 0.2000D+01	0.2000D+01 0.2000D+01 0.2000D+01	0.2000D+01 0.2000D+01 0.2000D+01	0.2000P+01 0.2000D+01 0.2000D+01	0+200 CD+01 0+200 CD+01	0+20000 +01 0+20000 +01	0.2000D+01 0.2000D+01	0.20000+01 C.20030+01	0.20000+01
CURFENT WEIGHT D	ATA								
MEMBER TYPE NU	MULL I	WEIGHT =	0.6581330+03					<u> </u>	
VARIABLE :	STRUCTURAL WE	1GHT 0.65F	1330+03						
	L STRUCTURAL STRUCTUPAL WF	WE IGHT IGHTHT	0+65 P1 33D+03 0+0						
	TCTA: LC		0.65811	10+01					

CONVERGENCE CHECK STAGE NC.= 1 0.1519D+23 C.1000D+01 MUST RE LESS THAM 0.1000000-02-02 DBJECTIVE FUNCTION OF THREE CONSECUTIVE STAGES APE 0.200000D+31 0.109000D+31 0.459133D+03

-

12

86

10000

1

١.

		······································	NCDAL DI	SPLACEMENTS		
	NODE	X	<u></u>	NCO.E	<u> </u>	
	LOAD CON	CITION I				
	1	0.282590-01 0.3354	0D+C0 0+45479C+00	2	0+125610-01 0+4+3830+00 0+304320+00 0+597+50-01 0+746520-01 0+126030+00	
	5	0.496050-01 -0.230	73D-01 0.29102D+00	6	-C.417230-01 -D.25470D-01 C.300136+0)	
	6	0.0 0.0	0.0	10	0.0 0.0 0.0	
	=======				.29487682828292929229228657848878492659282292679	
25 0.0 0.1 0.1	SIDE CON 99500+00 99500+00 99500+00	STRAINTS 0.9750D+00 0.9950D+00 0.9950D+00 0.9950D+00 0.9950D+00 0.9950C+00	0.93500+00 0.93500+00 0.93500+00 0.93500+00 0.99500+00 0.99500+00 C.93500+00 0.99500+00	4051 CRITI 0+09500+00 0+99500+00	CAL CENSTRAINT- 1.00503001+00 0.00500+00 0.20300+00 0.4000+00 0.40500+00 0.00500+00 0.403500+00 0.400500+00 0.40500+00	
	<u> </u>	CS-COMPINED_	Sx	SY	SXY SX-THERM SXY-THERM	
	1 1	1 0.339091D+03	0.33910+03 0.0	0.0		
			0.33910+03 0.0	0.0		
	2	1 -0.4993590+04	-0.5000D+04 0.h	0.0		
	1 3 1 3	1 -0.4441450+04	-0.44410+04 0.0	0.0		
	4	1 0.228350D+04 1 0.228350D+04	0.22840+04 0.0	<u>0.0</u>		··· · ···
	1 5	1 0.356440D+04	0.35640+04 0.0	0.0		
	<u> </u>	1 -0.448118D+04		<u>0.3</u>		
Q	1 0 1 7	1 0.3610110+94	C.3610D+04 0.0	0.0		
0	17 1 <u>9</u>	$\begin{array}{c} 1 \\ 0.3610110+04 \\ -0.4325060+04 \end{array}$	0.3510D+04 0.0 -D.4325D+04 0.0	0.0		
	8	1 -0.432506D+04	-0.4325D+04).0	0.0	······································	
	9	0.3131070+04	0.31310+04 0.0	0.0	~ 0	
	10	1 0.5952220+03	0.59520+03 0.0	0.0		
		1 0.763361D+03 1 0.763361D+03	0.75343+03 0.0 0.7634D+03 0.0	0.0 0.0		
	12-12-	1 0.206754D±04	<u>0.20680+04</u> 0.0		<u>Q</u>	
	13	1 -0.7563860+03	-0.7564D+03 0.0	0.0		
	14		-0.24100+04 0.0			
1	14	1 -0.240960D+04 1 0.779544D+03	-0.2410D+04 0.0 0.7795D+03 0.0	0.0	AD	
1	15	1 0.7795440+03	0.77930+03 0.0	0.0	EG	
·	16	1 -0.257862D+04	-0.25770+04 0.0	0.0		
	17	1 0.270306D+03 1 0.270306D+03	0.27030+03 0.0 0.27030+03 0.0	0.0	26	
		1 -0, 3731 05D +04	-0.37310+04 0.0	0.0		
	19	1 -0.382568D+04	-0.392oD+04 0.0	0.0		
1	19	1 ~0+392562D+04 1 0-182649D+04	~0.3825D+04 0.0 0.1826D+04 0.0	0.0		

		* 1/2/ 1 0.1770180 0.1770180	+ 1	0.132500 0.17730 0.17700	104 0.0 104 0.0	0.0					,
	22 23 23 24 24 25	0.5852010 -0.5583360 -0.5583360 0.5183030 0.5183030	+94)+94)+94)+94)+94)+94	0.58520 -0.55830 -0.55830 0.51830 0.51830	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
1 2 50 STRE 0.1008	55/5TRAIN CDN 0+01 0.7715D+	-0.6305390 STRAINTS C0 0.0750	D+00 0+1	-0.63050 26 1250+01	04 7.0 0.04 7.0 0.04 7.0 0.04 7.0 0.00	0.0 105T CEIT 0.11110-01	ICAL CONSTRA	INT= 0.01/3/ 0.1/290+00	5=41 +00 C.10PLC+01	v •¢103D+čõ	
0.4280 0.1019 0.9355 0.1044	0+01 0+0309L+ D+00 0+1064D+ D+01 0+9557D+	CO 0.1050 01 0.1050 01 0.1000 00 0.1146	0+01 0.0 0+01 0.0 0+01 0.0	0970+00 <u>4830+00</u> 932D+00 537D+00	0.99190+00 0.90670+00 0.86340+00	0.10100.401 0.10100.401 0.10930.401 0.11400.401	0.10703401 0.93983400 0.11300+01	0217040 0.10500+01 0.10300+01 0.87040+00	0+1015+01 0+1015+01 0+104 0+01 0+942()+00	0.2931D400 0.923510400 0.135430400 0.11380401	
25	CONSTRAINTS O 1 11 21	<u>201 OF 25</u> 12 22	CUTCF 13 23	<u>F POINT = 4</u> 14 23	<u>0.7995000</u> 15 25	+ 00	717	ß I A	1,	10 20	
0	CONSTRAINTS U CONSTRAINTS O		CUTCF	F POINT= F POINT=	0+ 3955000	+ 00				-	
	28 50 	30 52 74	33 55	F FUINT= 35 56	0.9842370 36 60	39 62	40 65	43 67	47 69	49 70	
22 	CONSTRAINTS D 28 50 73	UT DF 22 30 52 74	PETAINE 33 55	D DUE TO 35 56	VARIABLE LI 36 60	NKING 39 62	40 65	43 £7	47 0 ⁰	۸۵ 70	
	CONSTRAINTS O	UT OF 0 UT OF 0	CUTCF	F POINT=	0.7842370 0.7842370	+ 00	···				
*******	****	<u>大武学 由米市米本市</u> (*****	<u>****</u> [N]	TEGER ALCAY	5.1 <u>75 20</u>	1000 •G •	621_			
<u> </u>	RETAINED	TOTAL	MEMBER	MF M8E1	R NODE	DIRECTION	L.C.	MU)E CON	STRAINT VALUF	2	<u></u>
· · · · · · · · · · · · · · · · · · ·	SIDE CONSTRA 1 2 3	INTS 1 2 3	VCST CRITI	CAL = (0.0950000+00 1 2 3	L		-10 -19 ~19	0.0950900+0 0.0950000+0 0.0002+0	0 0	
↓	4 5 6 7	۲ ۲ ۲			4 5 6 7			-10 +10 -10 -10	0+000020+00 0+00000+0 0+000020+0 0+000020+0 0+00002020+0 0+00002020+0		<u></u>
	9 10 11 12	10 11 12	1 1 I		9 0 12			-10 -10 -10 -10	0+0350000+0 0+0350000+0 0+0550000+0 0+7350100+0	C 0 0	
	13 14 15	13 14 15	1 1 1		3 4 5			-10 -10 -10	0+5350000(+0 0+535010(+0 0+5350100(+0		

.

nets

<u>11</u> 1_	1 1 <u>1</u> 1	1	• 2 · 5
		-10	0+111 111 + 30 0+996 101 11+ 30
1918	iiă	ić	0.4JE3230436
20 20 20 21 21	1 20	-10	C+ 395 3005 + 30 D+ 505 3001 + 30
22 22	1 22	-10	0.9950300+95
2323		<u>-10</u>	0.69*0330+00
25 25	L 25	-10	0+0+000+00
CTREES ASTRAIN CONSTRAIN			
26 28	$\frac{1}{2}$	1 0	0.8750106+00
27 30	1 3	1 0	C . PAR9540+00
26 35	<u> </u>	ii	0.9429120+40
30 36	1 6	<u>i o</u>	0.8870710+00
31 39 32 40	1 7 1 8		0.5007470700 0.20187408
3343	i	ŏ	0.6217230+00
34 47		1 0	C+430 1160+00
36 50		i ŏ	C*~***211310
	1	<u>1</u>	0.4307600+00
39 56	1 15	1 0	0+9355350+00
40 60	1 19	1 0	0+9067240+30
42 65	<u> </u>	<u></u>	0.5643380+00
43 67	1 21	i õ	0.9557460+00
44 69 45 70	1 22	i e	0.8537000+00
46 73	1 24	1 ?	0+8704240+00
47 74	1 25	1 0	0.84230000
* SIDE : -1=LOWER BC	UND . +1=UPPER BOUND		
	LOWER BOUND, +1=UPPER BOUND		
STRESS/STPAIN ' 10	=VON NISES		
	=LONGITUDINAL STRAIN		
3	SHEAR STRAIN		
FREQUENCY ASSOCI	ATED MODE NUMBER		0 0
ANALYSIS TIME DATA			ਸ ਦਿ
ASSEMBLE MASSZSTIFFNESS MATEIX	0+6083330=01		0 R
DECOMPOSE STIFFNESS MATRIX	0.1052080-01		<u>OIA</u>
SOLUTION OF DISPLACEMENTS	0.916667D-02		50 Fe
ELUTTER ANALYSIS	0.1CA167D=03	·	<u></u>
CONSTRAINT EVALUATION	0.7281250-01		GA
SELECTIVE GRADIENT EVALUATION	0.5734370+00		<u>4</u> 9
	0-8641670+00	······	
	3400.000		N IS
*****			191.2
	INTEGER	20000 • 67 •	63

noore bu

INITIAL TRANSITION POINT $GQ = 3+12GQD+2Q$
TEANSITION POINT EXPONENT $P = 0.50000000000000000000000000000000000$
GOLDEN SECTION CONVERGENCE FPSGSN = 0.1000-012
UNCONSTRAINED MINIMIZATION CONVERGENCE EPSODM = 0.1000E-02
CINVERGENCE AMCNG RESPINSE SUPFACES GPERGE = 0.5)CCC-02 Desdonse factor deduction dation (actual - 0.3)CCC+02
MINIAUM ALL GWABLE RESPONSE FACT 19 PANIN = 0,13000-14
MAXINUM ALLOWABLE SIEP SIZE SIEPMX = 0.1200D+03
MAXIMUM NUMPER COLORN SECTIONS MAXGSN = 20 Maximum Numper Colorna Per Suseace Maximum = e
MAXIMUN ALLOWABLE RESSONSE SUPPACES MAXRE = 2
SYSTEM PAPAML TERS
NUMBER OF EFFECTIVE CONSTRAINTS NTCE = 22
INITIAL DESIGN ANALYSIS SUMMARY
INITIAL DESIGN VARIABLE VECTOP
0.1000D+01 0.1000D+01 0.1000D+01 0.1000D+01 0.1000D+01 0.1000D+01 0.1000D+01 0.1000D+01 0.1000D+01 0.1000D+01 0.1000D+01
SIDE CONSTRAINTS
s-+
<u>20+000000+02 (0+12000-0-0 20+00000-0 20+00000-0 000+0000000000</u>
15 17 18 19 19 19 19 19 19 10 10 11 11 11 11 11 11 11 11
53+05 m P. C 01+135 P. S 50+30 0 P. S 50+ 3 0 P. S 50+ 10 0P. S 50+ 100 0P. S 50+ 100+ 100+ 100+ 100+ 100+ 100+ 100+
0.87500+00 0.38900+00 0.94290+00 0.91090+00 0.84800+00 0.8910+00 0.8910+00 0.42170+00 0.42370+00
0.98110+00 0.93980+00 0.93050+00 0.335350+00 0.90670+00 0.90440+0) 0.95430+00 0.95570+00 0.85376+00 5.85440+00 0.87040+00 0.82200+00
TPANSITION POINT = 0.100000D+00 CDCFFICIENT OF TRANSITION FOINT CALCULATION = 0.2744740-01
TRANSITION POINT = $0.186264D-01$ CDEFFICIENT OF TRANSITION FOINT CALCULATION = $0.5112470-02$
$\frac{1}{10000000000000000000000000000000000$
$\frac{1}{10000000000000000000000000000000000$
TRANSTICK FINDING
(absorbed a = 0) (in the second of the contrast of the construction of Construction = 0.5 (b) $abad = 0.5$

----- DIRECTION FINDING -----

7

out nes

14AN51116N + 101 =	0+1+613 7-31	Cy Fill [H! DF T HIDE	1 14 41 16	LCH 7794	۲⊷الۍ≀ (مر
--------------------	--------------	------------------------	------------	----------	-------------

---- DIRECTION RINDING -----

↓

~4

TRANSITION POINT = 0.140214D-31	C)FEELCIENI	OF TRANSLT	ON ECINI CAL	CULATICA		2	
FINAL RESULTS OF OPTIMIZATION							
CURPENT CESIGN VARIABLE VECTOR							
0.43120+02 0.39540+01 0.40880+01	0.66190+01	0+49850+01	0+40270+01	0.48670+01	1.43760+01	1.5311D+01	0.29610+02
0.15650+02 0.66870+01 0.13400+02	0.76560+01	0+15190+02	0.8554D+01	0+39330+02	3.53390491	0.13400+01	0.05210+01
0.98000+01 0.33610+01 0.30250+01	0.38770+01	0.26200+01	• •				
-1 1 -2	2	~3	3	- 1	1		۳
0.43110+02 0.36880+02 0.39440+01	0.9605D+02	0.40780+01	0.46410+05	10+0,0000	0+933 9D+02	0.49755+01	2.95010+02
0.40170+01 0.95970+02 0.48570+61	0.95130+02	0.43660+01_		. 0.5304D+01-	0.946 99+02	-10	1.7.039D+02
-11 11 -12	12	-13	13	-11	10	-15	15
0.15640+02 0.84350+02 0.66770+01	0.43310+02	G+133917+02	0+84600+02	0.76477+01	2.22340+02	P+1319D+^2	0+44310+02
0.85440+01 $0.91450+02$ $0.39320+02$	-0.60670+02	0.53890+01_	0. SACID+02.	0.33300+01_	0.04540+02	-0-95110+01	0.20490102
-21 21 -22	22	-23	23	-21	24	- 25	25
0.9790D+01 0.9020D+02 0.3351D+C1	C.9564D+02	0.30150+01	0.96970+92	0-34470+01	0+44120+02	0.26100+01	0+97380+02
$0.54080\pm00.0.50530\pm00.0.65260\pm00.0$	0.50380+00	0.52000+00	_0. F275D+00_	0.5722D+00_	1.62350+00	-0-85460+00	0.84670+00
0.9430D+00 0.6432D+00 0.5989D+00	0.57440+00	0+57092+99	0.66320+90	0,74350+00	9.743 70+CC	0,45300+00	9437997400
C.46C4D+C0 0.3675D+C0							
$\frac{101\text{AL}}{08\text{JECTIVE}} = 0.28400410403$							
				CLUME AT L			
FINAL STATISTICS				COMPLATIV			
NUMBER OF RESPONSE SURFACE	2		TOTAL		0.9630		
NUMBER OF ONE DIMENSIONAL SFARCH	I - 8				0.2404		
NUMBER OF AMALINES				F	0.3617		
DBJECTIVE FUNCTION	<u></u>	1.74			0.0348		
APPROXIMATE OBJECTIVE FUNCT	ION	••• 0			0.0		
CONSTRAINT FUNCTIONS		• • • • • • • • • • • • • • • • • • • •			0.0105		
GRADIENT OF LINEAR CONSIBAL	NT FUNCTIONS	L		·	0.0001		
GRADIENT OF NONLINEAR CONST	RAINT FUNCTS	JNS . O			0.7		
CONSTRAINT FUNC	111100 + + +	• • • 137			···•76 (*		
<u> </u>				·			
			<u> </u>	······································			

OF
POOP
QUEA

*

STRE S	CCNSTRAINI S/STRAIN C	CNSTRAINT	0+12000000+0	0	·····		·····			<u> </u>
UFDATI 0 0 0	FD SCALING ,2317D-01 .6383D-01 .1020D+00	FACTORS <u>7+2529D+00</u> 0+14950+00 0+2976D+00	0+24450+00 0+74610-01 0+33050+00	0,1511D+00 0,1304D400 0,2580D+00	0.20050+00 0.75530-01 0.38160+00	0+11/50+00	0+20550+90 0+2030-31	0.122920+00		0.33775-01 1.3775-01
<u>UPDA T</u> 0 0 0	ED WEIGHT 2342D+00 • 0673D+00 • 3734D+01	COCFFICIENTS 0.6322D+01 0.2266D+01 0.8022D+01	0.53140+01 0.11300+31 0.69110+01	C. 32820+01 C.47790+01 0.69550+01	0.50140+01 0.24090+01 0.10290+02	0.53940+91 0.427FD+01 0.9	0 51360+01 0+0 0+0	0.57120+01 0.67770+01	2.4 094L + 21 0.695 3D+01	9.71168+93 9.38438+91
					· <u>-</u> ,					
<u> </u>										
								··	,	
104								······	······	· · · · · · · · · · · · · · · · · · ·
						·····				. <u> </u>
	<u> </u>	·							<u> </u>	
	······································				······································					

-

-
				······································		·····			
CURRENT ME	MBER SIZE								
MEMPLER TY 0.46: 0.12 0.204	YPE NUMPER 1 38D-01 0.5058D+0 78D+00 0.2991D+0 41D+00 0.5951D+0	0 0.48930+00 0 0.14920+00 0 0.66110+00	0.3022D+00 0.2612D+00 0.5159D+00	0.4012D+00 0.1317D+03 0.7632D+00	0+45670+00 0+23380+00	0.41000+00 0.50360-01	0.45700+00 0.37240+00	0.37540+00 0.37451+00	0.67541-01 0.21010+00
CURFENT WE	IGHT DATA								
MEMBER TI	YPE NUMBER 1	WEIGHT =	0.113150D+0.	3					
VAR	ABLE STRUCTURAL	WEIGHT 0.113	1500+03						
	TOTAL STRUCTURA	VE WEICHT WEIGHTHT	0.1131500+0. 0.0	3				·····	
		WEIGHT	0.1131	- 100+03					
CONVERGEN	NCF CHECK STA	GF NC.= 2	0.481	5D+01 0+1	15190+28 MU	ST HE LLSS T	HAN 0+1000	20-00-02	
08JEC1	FIVE FUNCTION OF	THREE CONSECUT	IVE STAGES A	ARE 0.10000	0.65	31330+03 0	•113150D+03		
			P	STURE TABLE					
<u>-</u>	RETAINED			NOPE D	IFFETTON	1		AINT VALUES	
	SIDE CONSTRAINT	S MCST CRI	TICAL = 0.	7844010+00					
			1 1				-10	2541010100	······································
6	2	4	1 1 1 4				-10 (0+7841010+00 0+9555070+00	······································
5	2 3 4	4 9 10	1 1 1 4 1 9				-10 (-10 (-10 (-10 (2.7841010+00 0.5555070+00 0.9734320+00 0.9734320+00	
LO 5	2 3 4 5 6	1 9 10 11	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-10 (0 -10 (0 -10 (0) -10 (0) -10 (0)	2.784 1010+90 2.555070+00 2.9734320+00 1.8510430+00 1.8510430+00 2.6640+00	
	2 3 4 5 6 7	1 9 <u>10</u> 12 13	1 1 1 4 1 3 1 10 1 11 1 12 1 13				$ \begin{array}{c} -10 & 0 \\ -10 & 0 $	0.7541010400 0.9550070400 0.9734320400 0.9734320400 0.9217330400 0.9217330400 0.955560400 0.9329420400	
	2 3 4 5 6 7 8	1 9 10 11 12 13 14	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				$ \begin{array}{c} -10 \\ -10 $	0.7841010+00 0.556070+00 0.734320+00 0.7515430+00 0.9217350+00 0.9229820+00 0.9329820+00 0.9329820+00	
ច ភ	2 3 4 5 6 7 8 	1 9 10 11 12 13 14 15 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$\begin{array}{c} -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ \end{array}$	0.7841010+00 0.556070+00 0.73432+00 0.73432+00 0.7217320+00 0.9217320+00 0.9329820+00 0.9329820+00 0.9329820+00 0.9272320+00	OF J
05 	2 3 4 5 6 7 8 9 10 11	1 9 10 11 12 13 14 15 16 17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$ \begin{array}{c} -10 \\ -10 $	0.7841010+00 0.556070+00 0.73432+00 0.73432+00 0.7217330+00 0.9217330+00 0.9329820+00 0.9329820+00 0.932710+00 0.9233710+00	OF PC
Бо 57	2 3 	1 9 10 11 12 13 14 15 16 17 16 17 19	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$\begin{array}{c} -10 & 0 \\$	0.7841010+00 0.556070+00 0.73432+00 0.73432+00 0.7217320+00 0.9217320+00 0.9229820+00 0.9329820+00 0.932710+00 0.923710+00 0.923710+00 0.973030400	OF POO
ັດ ກ	2 3 	1 4 9 10 11 12 13 14 15 16 17 19 20 21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$\begin{array}{c} -10 \\$	0.7841010+00 0.4565070+00 0.473430+00 0.47515430+00 0.4217350+00 0.42565660+00 0.4254920+00 0.4229820+00 0.4229820+00 0.42240430+00 0.4272320+00 0.4272320+00 0.4273030+00 0.4273030+00 0.4273030+00	URIGINAI OF POOR
5 5	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1 4 9 10 11 12 13 14 15 16 17 19 20 21	1 1 1 4 1 10 1 11 1 12 1 13 1 15 1 16 1 17 1 19 1 20 1 21				$\begin{array}{c} -10 \\$	0.7841010+00 0.556070+00 0.73432+00 0.7515430+00 0.9217350+00 0.9229820+00 0.9329820+00 0.9329820+00 0.9217180+00 0.923710+00 0.923710+00 0.9233710+00 0.9733310+00 0.9723-60+00 0.9523-60+00	URIGINAL OF POOR Q
5	2 3 4 5 6 7 8 9 10 11 12 13 14 15 5 5TPF5\$/STRAIN C	1 4 9 10 11 12 13 14 15 16 17 19 20 21 ONSTFAINTS 27	1 1 1 4 1 10 1 12 1 12 1 13 1 15 1 16 1 17 1 20 1 21 MOST CRITIC 1 15	CAL = 0.447	77 / PD+0 C	1	$\begin{array}{c} -10 \\$	0.7841010+00 0.556070+00 0.73432+00 0.7515430+00 0.9217350+00 0.9229820+00 0.9329820+00 0.9329820+00 0.9517180+00 0.9272320+00 0.9233710+00 0.9733310+00 0.9733310+00 0.9733310+00	URIGINAL PA OF POOR QU
5 5	2 3 4 5 6 7 8 9 10 11 12 13 14 15 5 5 TP FS\$/S TRAIN C 17	1 4 9 10 11 12 13 14 15 16 17 19 20 21 CONSTRAINTS 27 28	1 1 1 4 1 10 1 12 1 12 1 13 1 14 1 15 1 16 1 17 1 19 1 20 1 11 1 21 MOST CRITIC 1 1 2	CAL = 0.467	77* PD+0 C	1 1	$\begin{array}{c} -10 \\$	0.7841010+00 0.556070+00 0.73432+00 0.7515430+00 0.9217350+00 0.9229820+00 0.9329820+00 0.9329820+00 0.9572320+00 0.9272320+00 0.9233710+00 0.973030400 0.973030400 0.973030400 0.97323-60+00 0.9523-60+00	URIGINAL PAG OF POOR QUAI
5	2 3 4 5 6 7 8 9 10 11 12 13 14 15 5 5 7 8 9 10 11 12 13 14 15 5 5 5 7 8 9 10 11 12 13 14 15 5 17 18 19	1 4 9 10 11 12 13 14 15 16 17 16 17 19 20 21 CONST FAINTS 28 30 33	1 1 1 4 1 10 1 12 1 12 1 13 1 15 1 16 1 17 1 19 1 20 1 21 MOST CRITIC 1 21 1 21	CAL = 0.467	77 / PD+0 C	1	$\begin{array}{c} -10 \\$	0.7841010+00 0.556070+00 0.73432+00 0.73432+00 0.73432+00 0.9217330+00 0.9329820+00 0.9329820+00 0.93271280+00 0.9272320+00 0.973030400 0.973030400 0.973030400 0.973030400 0.973030400 0.973030400 0.973030400 0.973030400 0.973030400 0.973030400 0.973030400 0.973030400 0.9723-00400 0.973030400 0.973030400 0.9723-00400 0.9723-00400 0.9723-00400 0.9723-00400	URIGINAL PAGE OF POOR QUALT
5	2 3 4 5 6 7 8 9 10 11 12 13 14 15 5 5 7 8 9 10 11 12 13 14 15 5 5 5 7 8 9 10 11 12 13 14 15 5 6 7 8 9 10 11 12 13 14 15 5 6 7 8 9 10 11 12 12 13 14 15 15 16 7 8 9 10 11 12 12 13 14 15 15 16 7 10 11 12 12 14 15 16 17 18 19 10 11 12 12 14 15 16 16 17 18 19 19 10 11 11 12 11 12 11 12 12 14 11 12 14 11 12 14 14 15 15 16 17 18 19 19 10 11 11 12 11 11 12 12 11 11 12 12 11 11	1 4 9 10 11 12 13 14 15 16 17 19 20 21 CONSTRAINTS 27 28 30 33 35	1 1 1 4 1 10 1 11 1 12 1 13 1 15 1 16 1 16 1 19 1 20 1 21 MOST CRITIC 1 2 1 2 1 17 1 19 1 20 1 17 1 2 1 3 1 4 5	CAL = 0.447	77 / PD+0 C	1 1 1 1 1	$\begin{array}{c} -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ -10 & 0 \\ 0 \\ -10 & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0.7841010+00 0.556070+00 0.73432+00 0.73432+00 0.73430+00 0.9217330+00 0.9329820+00 0.9329820+00 0.93271280+00 0.9272320+00 0.973030+00 0.973030+00 0.973030+00 0.973030+00 0.973030+00 0.973030+00 0.973030+00 0.973030+00 0.973030+00 0.97371200+00 0.97271200+00 0.973740+00 0.973740+00	URIGINAL PAGE I
	2 3 4 5 6 7 8 9 10 11 12 13 14 15 5 5 7 9 10 11 12 13 14 15 5 5 5 5 5 5 5 5 7 8 9 10 11 12 13 14 15 5 6 7 8 9 10 11 12 12 13 14 15 5 6 7 8 9 10 11 12 12 13 14 15 5 6 7 8 9 10 11 12 12 13 14 15 5 7 8 9 10 11 12 12 13 14 15 5 7 8 9 10 11 12 12 14 15 15 16 7 10 11 12 12 14 15 15 16 17 18 19 10 11 11 12 12 14 15 15 16 17 18 19 19 10 11 11 12 12 11 12 12 12 12 12 12 12 12	1 4 9 10 11 12 13 14 15 16 17 16 17 19 20 21 CONSTRAINTS 27 28 30 33 35 36 19	1 1 1 4 1 10 1 11 1 12 1 13 1 15 1 16 1 16 1 19 1 20 1 20 1 20 1 21 MOST CRITIC 1 2 1 2 1 3 1 5 1 5 1 6 1 7	CAL = 0.447	77 / PD+0 C		$\begin{array}{c} -10 \\$	0.7841010+00 0.566070+00 0.73432+40 0.4516430+00 0.9217350+00 0.922920+20+00 0.922920+20+00 0.922920+20+00 0.923710+00 0.9233710+00 0.97232010+00 0.973030400 0.97303010+00 0.97303010+00 0.9723-60+00 0.95732-60+00 0.5271200+00 0.52740+00 0.52740+00 0.52740+00 0.52740+00 0.526430+00	URIGINAL, PAGE IS OF POOR QUALITY
бо 5 	2 3 4 5 6 7 8 9 10 11 12 13 14 15 5 5 7 8 9 10 11 12 13 14 15 5 5 5 5 5 5 5 5 5 7 8 9 10 11 12 12 13 14 15 5 6 7 8 9 10 11 12 12 13 14 15 5 6 7 8 9 10 11 12 12 12 14 15 5 6 7 8 9 10 11 12 12 14 15 5 6 7 8 10 11 12 12 14 15 5 6 7 8 10 11 12 12 14 15 5 6 7 8 10 11 12 12 14 15 5 7 8 10 11 11 12 12 14 15 5 5 7 8 10 11 11 12 12 14 15 5 5 5 5 7 8 10 11 11 12 12 14 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 4 9 10 11 12 13 14 15 16 17 16 17 19 20 21 CONSTRAINTS 27 28 30 35 35 36 19 40	1 1 1 4 1 10 1 11 1 12 1 13 1 15 1 16 1 17 1 19 1 20 1 20 1 20 1 21 MOST CRITIC 1 2 1 3 1 5 1 5 1 5 1 6 1 7 1 8	CAL = 0.447	77 f PD+0 C		$\begin{array}{c} -10 \\$	0.7641010+00 0.565070+00 0.77432+00 0.77432+00 0.77432+00 0.7217350+00 0.9217350+00 0.9329420+00 0.940430+00 0.9417180+00 0.9272320+00 0.9773030+00 0.9733310+00 0.9733310+00 0.9733310+00 0.9733310+00 0.9733310+00 0.9733310+00 0.9733310+00 0.9733310+00 0.9733310+00 0.9733310+00 0.9733310+00 0.9733310+00 0.9733310+00 0.9733310+00 0.9733310+00 0.9733310+00 0.9733310+00 0.9733310+00 0.9733310+00 0.9733010+00 0.9733300+00 0.973300+00 0.973300+00 0.973300+00 0.973300+00 0.973300+00 0.973300+00 0.973300+00 0.973300+00 0.973300+00 0.973000+00 0.973000+00 0.973000+00 0.973000+00 0.973000+00 0.973000+00 0.973000+00 0.973000+00 0.973000+00 0.973000+00 0.973000+00 0.973000+00 0.973000+00 0.9730000+00 0.9730000+00 0.9730000+00 0.9730000+00 0.9730000+00 0.97300000000000000000000000000000000000	URIGINAL PAGE IS OF POOR QUALITY
5	2 3 4 5 6 7 8 9 10 11 11 12 13 14 15 5 5 7 8 9 10 11 11 12 13 14 15 5 5 5 5 5 5 5 5 5 5 6 7 8 9 10 11 11 12 12 13 14 15 5 6 7 8 9 10 11 11 12 12 13 14 15 5 6 7 8 9 10 11 11 12 12 13 14 15 5 5 6 7 8 9 10 11 11 12 12 14 15 5 5 6 7 7 8 9 10 11 11 12 12 14 15 5 5 5 6 7 8 10 11 11 12 12 14 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 4 9 10 11 12 13 14 15 16 17 16 17 19 20 21 CONSTRAINTS 27 28 30 35 35 36 19 40 45	1 1 1 4 1 10 1 11 1 12 1 13 1 15 1 16 1 17 1 19 1 20 1 20 1 21 MOST CRITIC 1 3 1 6 1 7 1 6 1 7 1 8 1 9 1 10	CAL = 0.447	77 / PD+0 C		$ \begin{array}{c} -10 \\ -10 $	0.784 1010+00 0.565070+00 0.973432+00 0.973432+00 0.9217330+00 0.922920+20 0.922920+20 0.922920+20 0.923710+00 0.9233710+00 0.973030+00 0.973030+00 0.973030+00 0.973030+00 0.973030+00 0.973030+00 0.973030+00 0.9730400 0.973030+00 0.9730400 0.973030+00 0.9730400 0.973030+00 0.9730400 0.974000 0.974000 0.974000 0.974000 0.9740000 0.9740000 0.9740000 0.9740000 0.9740000 0.9740000 0.97400000 0.97400000000000000000000000000000000000	URIGINAL, PAGE IS OF POOR QUALITY

ų,

<u> </u>	
36 70 i 23 37 73 i 24	1 0 0.4477240+00 1 0 0.4722720+00
■ SIOP : -I=LOWER BLOND: +I=UPPER BOOND DISPLACEMENT -I=LCWFR BCUNC: +I=UPPER BOUND SUDDE : AL #AYS UDDE BCUNDS	
STRESS/STRAIN : 10=VON WISES 1=LONGITUDINAL STRAIN 2=TRANSVERSE STRAIN	
PPFQUENCY · ASSOCIATED MODE NUMBER	
INTEGRA	20000 .GC. APA
	,
¥	
	······

WI NES

CUREENT MEMBER SIZE		
MEMBER TYPE NUMERY I 0.10180-01 0.21880-400 0.23030+00 0.86910-01 0.18740+00 0.24310+00 0.4	2022F+30 0.21690+00 0.15840+0	0.10150-01
0.1015D-01 0.7653D-01 0.5323D-01 0.9804D-01 0.6590F-01 0.1034D+00 0.3 1370D-01 0.70400400 0.43670400 0.20370400 0.44660400	35030-01 0.30020-01 0.37230-0	1 2.10140-01
	· · · · · · · · · · · · · · · · · · ·	
CURRENT WEIGHT DATA		
MEMBEP TYPE NUMBER 1 WEIGHT = 0.4689260+02		
VARIABLE STRUCTURAL WEIGHT 0.4669260+02		
TOTAL STRUCTURAL WEIGHT 0.468926D+02		
NON-STRUCTURAL WEIGHTHT 0.0		
TOTAL WE LOHT 0.44689260+02		
107		
107		OR
		ORIC
		OF PO
		OF POOF
		OF POOR
		OF POOR QU
		OF POOR QUA
107		OF POOR QUALT

<u></u>	NODAL DISPLACEMENTS							
	NODE	X	<u>YZ</u>	<u>NODEX</u>	<u> </u>			
	LOAD CON	DITION 1						
. <u></u>	<u> </u>	-0.176290-01 0.3576	00+01 0+130720+01	-0+173720-0	1 7.3/(33(+0) -06203(+00			
	3	0+128370+00 -0+2339 0+221020+00 -0+3631	60+00 -0+782830+00 70+00 0+122850+01	4 -0.720200-0 6 -0.1/898D+0	11 -)+23417[+00 -0+746070+00 00 -)+36304[+00 0+11960[+01			
	9		0.0	8. <u>0.0</u> 10 C.0	<u> </u>			
. <u></u>	25 SIDE CON 0.1803D-01 0.1508D-01 0.2181D+00	STRAINTS 0.95430+00 0.9566D+00 0.85930+00 0.8121D+00 0.9710D+00 0.9766D+00	1 TD 25 0.2349D+00 0.9457D+00 0.5980D+00 0.8434D+00 0.966CD+03 0.9775D+00	NOST CRITICAL CONSTRAIN 0.95890400 0.95050400 0.90330400 0.71930400	NT= 0.137~9530-01 0.05430+00 0.93710+00 0.1516D-01 0.665580+00 0.73140+00 0.13760-01			
	<u></u>	C S-COMBINED	<u>5x</u>	iySxySx+	-THERA SY-THERM SXY-TI CAN			
	1 1	1 -0.4300250+04	-0.43000+04 0.0	0.0				
	<u>1</u>	<u>-0.3990500+05</u>	-0.13000+04 0.0	<u> </u>				
		1 -0.398751D+05	-0.39830+05 0.0 -0.39830+05 0.0	0.0				
	<u> </u>	1 0.398542D+05 1 0.398542D+05	0+39850+05 0+0					
	1 5 1 5	1 0.398671D+05 1 0.398671D+05	0+3987D+05 0.0 0+3987D+05 0.0	0.0				
	<u> </u>	1 -0.398968D+05 1 -0.398968D+05	-0.39900+05 0.0	0.0				
10:	1 7 1 7	1 0.398970D+05 1 0.398970D+05	0.3993D+05 0.0 0.3993D+05 0.0	0.0				
	1 8	1 -0.398696D+05	-0.3987D+05 0.0 -0.3987D+05 0.0	0.0	······································			
	1 9		0.39840+05 0.0	0.0				
·	1 10	1 0.4411520+04 1 0.4411520+04	0.44120+04 0.0	0.0	······································			
		1 0.439891D+04 1 0.439891D+04 1 = 0.395192D+05	0.43930+04 0.0	0.0				
·	1 12	1 -0.3951920+05	-0.39520+05 0.0	0.0				
		1 0.39199PD+05 =0.398563D+05	0.39200+05 0.0	0.0				
·······	1 14	1	-0.39850+05 0.0 9.39800+05 0.0	0.9				
,	1 15 1 16	1 0.398033D+05 1 -0.3987540+05	0.3980D+05 0.0 -0.3988D+05 0.0	0.0				
	1 16 1 17	1 -0.398794D+05 1 0.398087D+05	-0.39830+05 0.0 0.39810+05 0.0	0.0				
		1 0.398087D+05 1 -0.2999570+05	0.3981D+05 0.0 -0.3000D+05 0.0	0.0				
	1 18 1 19	1 -0.299957D+05 1 -0.334207D+05	-0.3000D+05 0.0 -0.3342D+05 0.0	0.0				
	1 19 1 20	1 -0.334207D+05 1 0.311447D+05	-0.33420+05 0.0 0.31140+05 7.0	0.0 0.0				

÷.

)

	1	21 1 21 1 21 1		311- 2707430 2797430)+05)+05	0.2	11-2+ 7-270+ 7970+	05 0.0	0.0						
	1	22 1 23 1 23 1 24 1	-0. -0.	3983470 3987470 3987470 3983100	+05)+05)+05	0+3 -0+3 -0+3 -0+39	7530+ 7530+ 7570+ 7570+	05 0.0 05 0.0 05 0.0 05 0.0	0.3						
	1 1 1	24 1 25 1 25 1	-0. -0.	3983100 3989300 3799300	05 05 0405	0.3 -0.3 -0.3	9830+ 7890+ 9890+	05 0.0 05 0.0 05 0.0	0.0 0.0 0.9						
	50 ST 0.892 0.258 0.111	RESS/STRAIN SD+00 C+11 0D-02 0+19 0D+01 0+89	CONSTP 08D+01 97D+01 00D+00	AINTS 0.2375 0.1997 0.1202	D-02 D+01 D-01	0.199804 0.25750	26 +01 -02 -01	TD 75 0,31240-02 0,32590-02 0,19300+01	HIST Cr 0.19970+ 0.19970+ 0.2001c=	1111 101 101 101	AL CONSTRAT 0+199(0+01 0+19960+01 0+19960+01	NT= 3.237 0.3546P=0 3.41110-0 0.1336P+0	65770-52 2 0+19970+01 2 0+1110L+91 1 0+19950+01	0 -3 3/40-32 0 -83 75+30 0 -69130-02	
	0.301	9D+01 0.30	06D+00	0.1995	D+01 0	•••132D-	- 20-	0.11750-05	0,17500+	01	0+10450+00 0+19960+01	0.1735C+0 0.4275C+0	1 0+17750+01 2 0+26750-02	0 +22140+00 0 +1997D+01	
<u> </u>	<u> </u>	<u>CONSTRAIN</u> 1	IS OUT 10	<u>OF 25</u>	CUJ 11	1 <u>CEF_P</u> .1	LNT= 20	0_ <u>408255</u> 21	D+00		<u>-</u>			· <u>-</u>	•
	0	CONSTRAIN	TS OUT	or 0	CUT	10FF PD1	(NT =	0.4062560	:+00						
	0	CONSTRAIN	TS OUT	OF C	CUI	CFF POI	INT=	0.408256	0+00						
<u> </u>	22	CONSTRAIN	15 OUT 30	0F =0	CUT	CFF POI	(NT =	0.4014250	+00	30			<u>د مع</u>		
		52 73	54 74		50		59	60		(2	65	5	7 (9	70	
	22	CONSTRAIN 28	<u>TS OUT </u> 30	<u>OF 22</u>	<u> </u>	NED DUE	<u>. ra v</u> 35	ARIABLE 1	LNKLUG	39	40	4	49	51	
		52 73	55 74		56		59	60		62	65	5		70	
	0	CONSTRAIN	TS OUT	05 0	CUT	CFF POT	NT =	0.4014250	2+00				····		
	0	CONSTRAIN	TS OUT	0F 0	CUT	ICFF POI	[NT =	0.4014250	00+00						
:	****	********	******	*****	*****	****	INTE	EGER ARPAY	S 17 F	2000		581	632		
<u> </u>								STUDE TAB				·····			
60,															
		RETAIN	FD	TOTAL	MEMPE	R1E	MIER	NODE	DIRECTION		<u>L_^C</u>	<u>MUDE CO</u>	STRAINT VALU	<u> </u>	
		SIDE CON	TRIVINT	s »	GST CRI	TICAL =	= 0	.1375950-01	1				0.1000/.00		
		······································	2	10		1	10					-10	C+1515550-0 C+1509320-0	1	······································
			4 	20		i	20					-10	0.137 0-D-0	i 	
1		STRESS/S	TRAIN C	ONSTRAI 28	NTS	MOST C	RITI(2	CAL = 0.2	2374480-02	l	- 1	0	0+2 17*580-1	د	
۷	······		8	33	· <u> </u>	1 1	4				1	<u> </u>	0-312351D-0 0-364608P-0	22	00
			10	35 36 30		1	5 4 7				1	0	0.3323510-0 0.2580350-0	2	FE
	···· , ·······························		12	40 43		 1 1	/- 				 1 1	0	0.3259080-0	2	OE
			14 15	48 51		1	12				I J	20	0 • 1 20 20 80 - 0	1	BE
															Qre
															A
															HE
															A D

10 2 17 55 18 56	1 1+ 1 15 1 16	1 1 1	0 0+401 0 0+301	· · · · · · · · · · · · · · · · · · ·
<u> </u>	1 17 1 18 1 19 1 20 1 21		0 0.27 0 0.27 0 0.15 0 0.15 0 0.271 0 0.271	<u>11687+20</u> 16837+20 1820+20 1920+20
24 60 25 70 26 73 27 74	1 22 1 23 1 24 1 25		0 C • 41 0 O • 31 0 C • 42 0 C • 42 0 C • 42	1740-02 114(1-02 249(1-02 249(1-02) 53:(1-02)
* SIDF : -1=LOWER B DISPLACEMENT : -1 SLOPE : ALWAYS U STRESS/STEAIN : 1	CUND, +1=UPPER BOUND LCWIR BOUND, +1=UPPER BOUND PPEP BOUNDS DEVON MISES)		
	I=LONGITUDINAL STRAIN 2=TRANSVERSF STRAIN 3=SHEAR_STRAIN			
FREQUENCY · ASSEC	IATED WODE NUMBER			
ANALYSIS TIME DATA ASSEMBLE MASS/STIFFNESS MATRIX ASSEMBLE LOAD VECTORS DECOMFOSE STIFFNESS MATRIX SOLUTION OF DISPLACEMENTS	0.6E2708D+00 0.571875D-01 0.103125D-01 0.101042D-01		<u> </u>	
FRFOUFNCY ANALYSIS Flutter Analysis Constraint Evaluation Postupe table Set	0.0 0.0 0.7710750-01 0.4468750-01			
GRAND TOTAL CPU TIME	0.601250D+00 0.895208D+00			
MAXIMUM NUMBER OF STAGES AP	E PERFCRMED			
		······································	· · · · · · · · · · · · · ·	

SUMTOP TIME STATISTICS		
TOTAL	16.2723	
INITIAL PREPARATION	0.0361	
DESTGN_PHASE	16.2362	
ANALYSIS TOTAL	9.7252	
OFTIMIZER TOTAL	6.3054	
OF FIGURE 1 OF ALL	200904	
i .		
MAIN PRUGHAM TIME STATISTIC	5	
PFE-PROCF5SOR	0+5224	
DESIGN PHASE	16.2746	
GPAND TOTAL	16.7970	
	~	
	<u> </u>	
		Q B
		B EL
······································		
₩		P H
ш		07
<u>.</u>		
· · · · · · · · · · · · · · · · · · ·		34
		C H
		<u> </u>
	·····	
		L.B.
		H-
·		

1	Report No NASA CR-158949	2 Government Access	on No	3 Recip	ient's Catalog No					
4	Title and Subtitle A C C E S S - 2 APPROXIMATION CONCEPTS CO SYNTHESIS - USER'S GUIDE	DE FOR EFFICIENT	STRUCTURA	5 Repor Sept L 6 Perfor	t Date cember 1978 ming Organization Code					
7	Author(s)			8 Perfor	ming Organization Report No					
	Hırokazu Mıura and Lucıen	A. Schmit, Jr.		10 Work	Hort No					
9	Performing Organization Name and Addres	s		505-	.02_13_42					
	University of California,	Los Angeles		act or Grant No						
	203 migared, off 50024			NGR	05-007-337					
12	Seessarias Aconov Namo and Address			13 Type	of Report and Period Covered					
14	National Aeronautics and	Space Administrat	ion	Cont	ractor Report					
	Washington, DC 20546	space Auministrat	1011	14 Spons	oring Agency Code					
15	Supplementary Notes									
	W. Jefferson Stroud, Stru was technical monitor on	ctures and Dynami this grant.	cs Divisi	on, Langley Re	esearch Center,					
16	Abstract	· · · · · · · · · · · · · · · · · · ·								
	This report serves as a user's guide for the ACCESS-2 computer program. ACCESS-2 is a research oriented program which implements a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and general mathematical programming algorithms are applied in the design optimization procedure. ACCESS-2 was developed based on ACCESS-1, but a major part of the program was rewritten to accommodate the following new features: Dynamic array allocation Thermal loading Frequency constraints Extended element library Constant strain orthotropic triangular element Symmetric pure shear element Thermal symmetric shear element									
	Auxiliary	data storage file	S							
17	Key Words (Suggested by Author(s))		18 Distribut	ion Statement						
	Structural synthesis Structural optimization		11	netted 11.7	un bad					
	Minimum mass design Mathematical programming ACCESS-2		Subject Category 39							
19	Security Classif (of this report)	20 Security Classif (of this	page)	21 No of Pages	22 Price*					
	Unclassified	Unclassified		114	\$6.50					
	0.10100011100			L	L					

* For sale by the National Technical Information Service, Springfield, Virginia 22161