177 research outputs found
Prognostic Biomarkers for Esophageal Adenocarcinoma Identified by Analysis of Tumor Transcriptome
Despite many attempts to establish pre-treatment prognostic markers to understand the clinical biology of esophageal adenocarcinoma (EAC), validated clinical biomarkers or parameters remain elusive. We generated and analyzed tumor transcriptome to develop a practical biomarker prognostic signature in EAC.Untreated esophageal endoscopic biopsy specimens were obtained from 64 patients undergoing surgery and chemoradiation. Using DNA microarray technology, genome-wide gene expression profiling was performed on 75 untreated cancer specimens from 64 EAC patients. By applying various statistical and informatical methods to gene expression data, we discovered distinct subgroups of EAC with differences in overall gene expression patterns and identified potential biomarkers significantly associated with prognosis. The candidate marker genes were further explored in formalin-fixed, paraffin-embedded tissues from an independent cohort (52 patients) using quantitative RT-PCR to measure gene expression. We identified two genes whose expression was associated with overall survival in 52 EAC patients and the combined 2-gene expression signature was independently associated with poor outcome (P<0.024) in the multivariate Cox hazard regression analysis.Our findings suggest that the molecular gene expression signatures are associated with prognosis of EAC patients and can be assessed prior to any therapy. This signature could provide important improvement for the management of EAC patients
A study protocol to investigate the management of depression and challenging behaviors associated with dementia in aged care settings
Background: The high occurrence and under-treatment of clinical depression and behavioral and psychological symptoms of dementia (BPSD) within aged care settings is concerning, yet training programs aimed at improving the detection and management of these problems have generally been ineffective. This article presents a study protocol to evaluate a training intervention for facility managers/registered nurses working in aged care facilities that focuses on organisational processes and culture as well as knowledge, skills and self-efficacy. Methods. A Randomised Control Trial (RCT) will be implemented across 18 aged care facilities (divided into three conditions). Participants will be senior registered nurses and personal care attendants employed in the aged care facility. The first condition will receive the training program (Staff as Change Agents - Enhancing and Sustaining Mental Health in Aged Care), the second condition will receive the training program and clinical support, and the third condition will receive no intervention. Results: Pre-, post-, 6-month and 12-month follow-up measures of staff and residents will be used to demonstrate how upskilling clinical leaders using our transformational training approach, as well as the use of a structured screening, referral and monitoring protocol, can address the mental health needs of older people in residential care. Conclusions: The expected outcome of this study is the validation of an evidence-based training program to improve the management of depression and BPSD among older people in residential care settings by establishing routine practices related to mental health. This relatively brief but highly focussed training package will be readily rolled out to a larger number of residential care facilities at a relatively low cost.</div
Tumor Associated Stromal Cells Play a Critical Role on the Outcome of the Oncolytic Efficacy of Conditionally Replicative Adenoviruses
The clinical efficacy of conditionally replicative oncolytic adenoviruses (CRAd) is still limited by the inefficient infection of the tumor mass. Since tumor growth is essentially the result of a continuous cross-talk between malignant and tumor-associated stromal cells, targeting both cell compartments may profoundly influence viral efficacy. Therefore, we developed SPARC promoter-based CRAds since the SPARC gene is expressed both in malignant cells and in tumor-associated stromal cells. These CRAds, expressing or not the Herpes Simplex thymidine kinase gene (Ad-F512 and Ad(I)-F512-TK, respectively) exerted a lytic effect on a panel of human melanoma cells expressing SPARC; but they were completely attenuated in normal cells of different origins, including fresh melanocytes, regardless of whether cells expressed or not SPARC. Interestingly, both CRAds displayed cytotoxic activity on SPARC positive-transformed human microendothelial HMEC-1 cells and WI-38 fetal fibroblasts. Both CRAds were therapeutically effective on SPARC positive-human melanoma tumors growing in nude mice but exhibited restricted efficacy in the presence of co-administered HMEC-1 or WI-38 cells. Conversely, co-administration of HMEC-1 cells enhanced the oncolytic efficacy of Ad(I)-F512-TK on SPARC-negative MIA PaCa-2 pancreatic cancer cells in vivo. Moreover, conditioned media produced by stromal cells pre-infected with the CRAds enhanced the in vitro viral oncolytic activity on pancreatic cancer cells, but not on melanoma cells. The whole data indicate that stromal cells might play an important role on the outcome of the oncolytic efficacy of conditionally replicative adenoviruses
Serial selection for invasiveness increases expression of miR-143/miR-145 in glioblastoma cell lines
<p>Abstract</p> <p>Background</p> <p>Glioblastoma multiforme (GBM) is the most common primary central nervous system malignancy and its unique invasiveness renders it difficult to treat. This invasive phenotype, like other cellular processes, may be controlled in part by microRNAs - a class of small non-coding RNAs that act by altering the expression of targeted messenger RNAs. In this report, we demonstrate a straightforward method for creating invasive subpopulations of glioblastoma cells (IM3 cells). To understand the correlation between the expression of miRNAs and the invasion, we fully profiled 1263 miRNAs on six different cell lines and two miRNAs, miR-143 and miR-145, were selected for validation of their biological properties contributing to invasion. Further, we investigated an ensemble effect of both miR-143 and miR-145 in promoting invasion.</p> <p>Methods</p> <p>By repeated serial invasion through Matrigel<sup>®</sup>-coated membranes, we isolated highly invasive subpopulations of glioma cell lines. Phenotypic characterization of these cells included <it>in vitro </it>assays for proliferation, attachment, and invasion. Micro-RNA expression was compared using miRCURY arrays (Exiqon). In situ hybridization allowed visualization of the regional expression of miR-143 and miR-145 in tumor samples, and antisense probes were used investigate <it>in vitro </it>phenotypic changes seen with knockdown in their expression.</p> <p>Results</p> <p>The phenotype we created in these selected cells proved stable over multiple passages, and their microRNA expression profiles were measurably different. We found that two specific microRNAs expressed from the same genetic locus, miR-143 and miR-145, were over-expressed in our invasive subpopulations. Further, we also found that combinatorial treatment of these cells with both antisense-miRNAs (antimiR-143 and -145) will abrogated their invasion without decreasing cell attachment or proliferation.</p> <p>Conclusions</p> <p>To best of our knowledge, these data demonstrate for the first time that miR-143 and miR-145 regulate the invasion of glioblastoma and that miR-143 and -145 could be potential therapeutic target for anti-invasion therapies of glioblastoma patients.</p
Reassessment of CXCR4 Chemokine Receptor Expression in Human Normal and Neoplastic Tissues Using the Novel Rabbit Monoclonal Antibody UMB-2
BACKGROUND: The CXCR4 chemokine receptor regulates migration and homing of cancer cells to specific metastatic sites. Determination of the CXCR4 receptor status will provide predictive information for disease prognosis and possible therapeutic intervention. However, previous attempts to localize CXCR4 using poorly characterized mouse monoclonal or rabbit polyclonal antibodies have produced predominant nuclear and occasional cytoplasmic staining but did not result in the identification of bona fide cell surface receptors. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we extensively characterized the novel rabbit monoclonal anti-CXCR4 antibody (clone UMB-2) using transfected cells and tissues from CXCR4-deficient mice. Specificity of UMB-2 was demonstrated by cell surface staining of CXCR4-transfected cells; translocation of CXCR4 immunostaining after agonist exposure; detection of a broad band migrating at M(r) 38,000-43,000 in Western blots of homogenates from CXCR4-expressing cells; selective detection of the receptor in tissues from CXCR4+/+ but not from CXCR4-/- mice; and abolition of tissue immunostaining by preadsorption of UMB-2 with its immunizing peptide. In formalin-fixed, paraffin-embedded human tumor tissues, UMB-2 yielded highly effective plasma membrane staining of a subpopulation of tumor cells, which were often heterogeneously distributed throughout the tumor. A comparative analysis of the mouse monoclonal antibody 12G5 and other frequently used commercially available antibodies revealed that none of these was able to detect CXCR4 under otherwise identical conditions. CONCLUSIONS/SIGNIFICANCE: Thus, the rabbit monoclonal antibody UMB-2 may prove of great value in the assessment of the CXCR4 receptor status in a variety of human tumors during routine histopathological examination
MMP-9, uPAR and Cathepsin B Silencing Downregulate Integrins in Human Glioma Xenograft Cells In Vitro and In Vivo in Nude Mice
Involvement of MMP-9, uPAR and cathepsin B in adhesion, migration, invasion, proliferation, metastasis and tumor growth has been well established. In the present study, MMP-9, uPAR and cathepsin B genes were downregulated in glioma xenograft cells using shRNA plasmid constructs and we evaluated the involvement of integrins and changes in their adhesion, migration and invasive potential.MMP-9, uPAR and cathepsin B single shRNA plasmid constructs were used to downregulate these molecules in xenograft cells. We also used MMP-9/uPAR and MMP-9/cathepsin B bicistronic constructs to evaluate the cumulative effects. MMP-9, uPAR and cathepsin B downregulation significantly inhibits xenograft cell adhesion to several extracellular matrix proteins. Treatment with MMP-9, uPAR and cathepsin B shRNA of xenografts led to the downregulation of several alpha and beta integrins. In all the assays, we noticed more prominent effects with the bicistronic plasmid constructs when compared to the single plasmid shRNA constructs. FACS analysis demonstrated the expression of alphaVbeta3, alpha6beta1 and alpha9beta1 integrins in xenograft cells. Treatment with bicistronic constructs reduced alphaVbeta3, alpha6beta1 and alpha9beta1 integrin expressions in xenograft injected nude mice. Migration and invasion were also inhibited by MMP-9, uPAR and cathepsin B shRNA treatments as assessed by spheroid migration, wound healing, and Matrigel invasion assays. As expected, bicistronic constructs further inhibited the adhesion, migration and invasive potential of the xenograft cells as compared to individual treatments.Downregulation of MMP-9, uPAR and cathespin B alone and in combination inhibits adhesion, migration and invasive potential of glioma xenografts by downregulating integrins and associated signaling molecules. Considering the existence of integrin inhibitor-resistant cancer cells, our study provides a novel and effective approach to inhibiting integrins by downregulating MMP-9, uPAR and cathepsin B in the treatment of glioma
Ocular accommodation and cognitive demand: An additional indicator besides pupil size and cardiovascular measures?
<p>Abstract</p> <p>Background</p> <p>The aim of the present study was to assess accommodation as a possible indicator of changes in the autonomic balance caused by altered cognitive demand. Accounting for accommodative responses from a human factors perspective may be motivated by the interest of designing virtual image displays or by establishing an autonomic indicator that allows for remote measurement at the human eye. Heart period, pulse transit time, and the pupillary response were considered as reference for possible closed-loop accommodative effects. Cognitive demand was varied by presenting monocularly numbers at a viewing distance of 5 D (20 cm) which had to be read, added or multiplied; further, letters were presented in a "n-back" task.</p> <p>Results</p> <p>Cardiovascular parameters and pupil size indicated a change in autonomic balance, while error rates and reaction time confirmed the increased cognitive demand during task processing. An observed decrease in accommodation could not be attributed to the cognitive demand itself for two reasons: (1) the cognitive demand induced a shift in gaze direction which, for methodological reasons, accounted for a substantial part of the observed accommodative changes. (2) Remaining effects disappeared when the correctness of task processing was taken into account.</p> <p>Conclusion</p> <p>Although the expectation of accommodation as possible autonomic indicator of cognitive demand was not confirmed, the present results are informative for the field of applied psychophysiology noting that it seems not to be worthwhile to include closed-loop accommodation in future studies. From a human factors perspective, expected changes of accommodation due to cognitive demand are of minor importance for design specifications – of, for example, complex visual displays.</p
CXCR4/CXCL12 expression and signalling in kidney cancer
CXCL12 (SDF-1), a CXC-chemokine, and its specific receptor, CXCR4, have recently been shown to be involved in tumourgenesis, proliferation and angiogenesis. Therefore, we analysed CXCL12α/CXCR4 expression and function in four human kidney cancer cell lines (A-498, CAKI-1, CAKI-2, HA-7), 10 freshly harvested human tumour samples and corresponding normal kidney tissue. While none of the analysed tumour cell lines expressed CXCL12α, A-498 cells were found to express CXCR4. More importantly, real-time RT–PCR analysis of 10 tumour samples and respective adjacent normal kidney tissue disclosed a distinct and divergent downregulation of CXCL12α and upregulation of CXCR4 in primary tumour tissue. To prove that the CXCR4 protein is functionally active, rhCXCL12α was investigated for its ability to induce changes of intracellular calcium levels in A-498 cells. Moreover, we used cDNA expression arrays to evaluate the biological influence of CXCL12α. Comparing gene expression profiles in rhCXCL12α stimulated vs unstimulated A-498 kidney cancer cells revealed specific regulation of 31 out of 1176 genes tested on a selected human cancer array, with a prominent stimulation of genes involved in cell-cycle regulation and apoptosis. The genetic changes reported here should provide new insights into the developmental paths leading to tumour progression and may also aid the design of new approaches to therapeutic intervention
- …