2,154 research outputs found

    Spin dynamics and magnetic-field-induced polarization of excitons in ultrathin GaAs/AlAs quantum wells with indirect band gap and type-II band alignment

    Full text link
    The exciton spin dynamics are investigated both experimentally and theoretically in two-monolayer-thick GaAs/AlAs quantum wells with an indirect band gap and a type-II band alignment. The magnetic-field-induced circular polarization of photoluminescence, PcP_c, is studied as function of the magnetic field strength and direction as well as sample temperature. The observed nonmonotonic behaviour of these functions is provided by the interplay of bright and dark exciton states contributing to the emission. To interpret the experiment, we have developed a kinetic master equation model which accounts for the dynamics of the spin states in this exciton quartet, radiative and nonradiative recombination processes, and redistribution of excitons between these states as result of spin relaxation. The model offers quantitative agreement with experiment and allows us to evaluate, for the studied structure, the heavy-hole gg factor, ghh=+3.5g_{hh}=+3.5, and the spin relaxation times of electron, τse=33 μ\tau_{se} = 33~\mus, and hole, τsh=3 μ\tau_{sh} = 3~\mus, bound in the exciton.Comment: 17 pages, 16 figure

    Helicity-dependent photocurrents in graphene layers excited by mid-infrared radiation of a CO2_2-laser

    Get PDF
    We report the study of the helicity driven photocurrents in graphene excited by mid-infrared light of a CO2_2-laser. Illuminating an unbiased monolayer sheet of graphene with circularly polarized radiation generates -- under oblique incidence -- an electric current perpendicular to the plane of incidence, whose sign is reversed by switching the radiation helicity. We show that the current is caused by the interplay of the circular acac Hall effect and the circular photogalvanic effect. Studying the frequency dependence of the current in graphene layers grown on the SiC substrate we observe that the current exhibits a resonance at frequencies matching the longitudinal optical phonon in SiC

    Spin relaxation of two-dimensional electrons with a hierarchy of spin-orbit couplings

    Full text link
    The density matrix formalism is applied to calculate the spin-relaxation time for two-dimensional systems with a hierarchy of spin-orbit couplings, such as Rashba-type, Dresselhaus-type and so on. It is found that the spin-relaxation time can be infinite if those coupling strengths α\alpha, β\beta, γ1\gamma_1 and γ2\gamma_2 satisfy either condition (i) α=β,γ1=0\alpha=\beta, \gamma_1=0 or (ii) α=β,γ2=0\alpha=-\beta, \gamma_2=0, which correspond to the vanishing Yang-Mills "magnetic" field. The effect caused by the application of an external magnetic field is also discussed. It is found that the longitudinal and in-plane spin components can possess infinite life time when the spin components, the Larmor precession frequency and the external magnetic field satisfy certain relations.Comment: Revtex, 7 pages, 3 figure

    New insights into electron spin dynamics in the presence of correlated noise

    Full text link
    The changes of the spin depolarization length in zinc-blende semiconductors when an external component of correlated noise is added to a static driving electric field are analyzed for different values of field strength, noise amplitude and correlation time. Electron dynamics is simulated by a Monte Carlo procedure which keeps into account all the possible scattering phenomena of the hot electrons in the medium and includes the evolution of spin polarization. Spin depolarization is studied by examinating the decay of the initial spin polarization of the conduction electrons through the D'yakonov-Perel process, the only relevant relaxation mechanism in III-V crystals. Our results show that, for electric field amplitude lower than the Gunn field, the dephasing length shortens with the increasing of the noise intensity. Moreover, a nonmonotonic behavior of spin depolarization length with the noise correlation time is found, characterized by a maximum variation for values of noise correlation time comparable with the dephasing time. Instead, in high field conditions, we find that, critically depending on the noise correlation time, external fluctuations can positively affect the relaxation length. The influence of the inclusion of the electron-electron scattering mechanism is also shown and discussed.Comment: Published on "Journal of Physics: Condensed Matter" as "Fast Track Communications", 11 pages, 9 figure

    Spin- and energy relaxation of hot electrons at GaAs surfaces

    Full text link
    The mechanisms for spin relaxation in semiconductors are reviewed, and the mechanism prevalent in p-doped semiconductors, namely spin relaxation due to the electron-hole exchange interaction, is presented in some depth. It is shown that the solution of Boltzmann-type kinetic equations allows one to obtain quantitative results for spin relaxation in semiconductors that go beyond the original Bir-Aronov-Pikus relaxation-rate approximation. Experimental results using surface sensitive two-photon photoemission techniques show that the spin relaxation-time of electrons in p-doped GaAs at a semiconductor/metal surface is several times longer than the corresponding bulk spin relaxation-times. A theoretical explanation of these results in terms of the reduced density of holes in the band-bending region at the surface is presented.Comment: 33 pages, 12 figures; earlier submission replaced by corrected and expanded version; eps figures now included in the tex

    Unified Semi-Classical Description of Intrinsic Spin-Hall Effect in Spintronic, Optical, and Graphene Systems

    Full text link
    A semi-classical description of the intrinsic spin-Hall effect (SHE) is presented which is relevant for a wide class of systems. A heuristic model for the SHE is developed, starting with a fully quantum mechanical treatment, from which we construct an intuitive expression for the spin-Hall current and conductivity. Our method makes transparent the physical mechanism which drives the effect, and unifies the SHE across several spintronic and optical systems. Finally, we propose an analogous effect in bilayer graphene.Comment: 5 pages, 2 figures, 1 tabl
    corecore