117 research outputs found

    Seismotectonic investigations in the inner Cottian Alps (Italian Western Alps): An integrated approach

    Get PDF
    This work integrates the results of recent geological–structural studies with new seismological data for the inner Cottian Alps to investigate the connection between faults and seismicity. The major post-metamorphic tectonic feature of this sector is represented by a N–S structure, named Lis–Trana Deformation Zone (LTZ). Since the Late Oligocene, this structure accommodated right-lateral (Late Oligocene–Early Miocene) and subsequently normal (post-Early Miocene) displacements. In the Pleistocene, the activity of the LTZ seems to have caused the development of lacustrine basins inside the valleys that drain this sector of Western Alps. The present-day seismicity joins the northern part of the LTZ and, southwards, other minor sub-parallel structures. In transversal cross-section hypocentres highlight steep surfaces. Focal mechanisms calculated along this structure show both extensional and strike–slip solutions, mostly with one roughly N–S striking nodal plane. Both sub-horizontal (with NE–SW to ENE–WSW trend) and steeply dipping P axes with N–S to NW–SE sub-horizontal T axes are observed. Even if clear evidence of Quaternary tectonic activity in the area is missing, on the basis of the available seismological and geological data we propose that in the inner Northern Cottian Alps the present-day seismic activity may be connected to the LTZ, interpreted as minor sub-parallel fault strand of the Canavese Line. The kinematics of this structure is consistent with the focal mechanisms calculated in this area. Structural and seismological data indicate that LTZ is active under a bulk dextral–transtensive regime since the late Oligocene in the inner Cottian Alps, in agreement with the data published for the adjacent domain of the chain.Published1-163.3. Geodinamica e struttura dell'interno della TerraJCR Journalrestricte

    Inflammatory extracellular vesicles prompt heart dysfunction via TRL4-dependent NF-κB activation.

    Get PDF
    Background: After myocardial infarction, necrotic cardiomyocytes release damage-associated proteins that stimulate innate immune pathways and macrophage tissue infiltration, which drives inflammation and myocardial remodeling. Circulating inflammatory extracellular vesicles play a crucial role in the acute and chronic phases of ischemia, in terms of inflammatory progression. In this study, we hypothesize that the paracrine effect mediated by these vesicles induces direct cytotoxicity in cardiomyocytes. Thus, we examined whether reducing the generation of inflammatory vesicles within the first few hours after the ischemic event ameliorates cardiac outcome at short and long time points. Methods: Myocardial infarction was induced in rats that were previously injected intraperitoneally with a chemical inhibitor of extracellular-vesicle biogenesis. Heart global function was assessed by echocardiography performed at 7, 14 and 28 days after MI. Cardiac outcome was also evaluated by hemodynamic analysis at sacrifice. Cytotoxic effects of circulating EV were evaluated ex-vivo in a Langendorff, system by measuring the level of cardiac troponin I (cTnI) in the perfusate. Mechanisms undergoing cytotoxic effects of EV derived from pro-inflammatory macrophages (M1) were studied in-vitro in primary rat neonatal cardiomyocytes. Results: Inflammatory response following myocardial infarction dramatically increased the number of circulating extracellular vesicles carrying alarmins such as IL-1α, IL-1β and Rantes. Reducing the boost in inflammatory vesicles during the acute phase of ischemia resulted in preserved left ventricular ejection fraction in vivo. Hemodynamic analysis confirmed functional recovery by displaying higher velocity of left ventricular relaxation and improved contractility. When added to the perfusate of isolated hearts, post-infarction circulating vesicles induced significantly more cell death in adult cardiomyocytes, as assessed by cTnI release, comparing to circulating vesicles isolated from healthy (non-infarcted) rats. In vitro inflammatory extracellular vesicles induce cell death by driving nuclear translocation of NF-κB into nuclei of cardiomyocytes. Conclusion: Our data suggest that targeting circulating extracellular vesicles during the acute phase of myocardial infarction may offer an effective therapeutic approach to preserve function of ischemic heart

    外汇风险溢酬理论述评

    Get PDF
    外汇风险溢酬是从资产定价角度研究汇率变化的核心内容,但还未获得一致结论。目前,对外汇风险溢酬的时间序列建模并不理想,隐含变量模型和仿射模型都不能刻画外汇风险溢酬的时间序列特征;对外汇风险溢酬风险因子的研究缺乏一个统一框架,消费、微观市场因子和货币政策都只能部分解释外汇风险溢酬的变化。基于随机贴现因子的模型目前相对零散,但这一框架是后续研究的重点。一个亟待研究的课题是既把汇率作为投资性资产的价格,又考虑汇率作为两国货币的相对比价,研究外汇风险溢酬与两国经济波动、两国经济相关性的内在联系,从理论上厘清影响外汇风险溢酬的因素

    Transduction of Brain Dopamine Neurons by Adenoviral Vectors Is Modulated by CAR Expression: Rationale for Tropism Modified Vectors in PD Gene Therapy

    Get PDF
    Gene-based therapy is a new paradigm for the treatment of Parkinson disease (PD) and offers considerable promise for precise targeting and flexibility to impact multiple pathobiological processes for which small molecule agents are not available. Some success has been achieved utilizing adeno-associated virus for this approach, but it is likely that the characteristics of this vector system will ultimately create barriers to progress in clinical therapy. Adenovirus (Ad) vector overcomes limitations in payload size and targeting. The cellular tropism of Ad serotype 5 (Ad5)-based vectors is regulated by the Ad attachment protein binding to its primary cellular receptor, the coxsackie and adenovirus receptor (CAR). Many clinically relevant tissues are refractory to Ad5 infection due to negligible CAR levels but can be targeted by tropism-modified, CAR-independent forms of Ad. Our objective was to evaluate the role of CAR protein in transduction of dopamine (DA) neurons in vivo.Ad5 was delivered to the substantia nigra (SN) in wild type (wt) and CAR transgenic animals. Cellular tropism was assessed by immunohistochemistry (IHC) in the SN and striatal terminals. CAR expression was assessed by western blot and IHC. We found in wt animals, Ad5 results in robust transgene expression in astrocytes and other non-neuronal cells but poor infection of DA neurons. In contrast, in transgenic animals, Ad5 infects SNc neurons resulting in expression of transduced protein in their striatal terminals. Western blot showed low CAR expression in the ventral midbrain of wt animals compared to transgenic animals. Interestingly, hCAR protein localizes with markers of post-synaptic structures, suggesting synapses are the point of entry into dopaminergic neurons in transgenic animals.These findings demonstrate that CAR deficiency limits infection of wild type DA neurons by Ad5 and provide a rationale for the development of tropism-modified, CAR-independent Ad-vectors for use in gene therapy of human PD

    Wolfram Syndrome: New Mutations, Different Phenotype

    Get PDF
    BACKGROUND: Wolfram Syndrome (WS) is an autosomal recessive neurodegenerative disorder characterized by Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness identified by the acronym "DIDMOAD". The WS gene, WFS1, encodes a transmembrane protein called Wolframin, which recent evidence suggests may serve as a novel endoplasmic reticulum calcium channel in pancreatic β-cells and neurons. WS is a rare disease, with an estimated prevalence of 1/550.000 children, with a carrier frequency of 1/354. The aim of our study was to determine the genotype of WS patients in order to establish a genotype/phenotype correlation. METHODOLOGY/PRINCIPAL FINDINGS: We clinically evaluated 9 young patients from 9 unrelated families (6 males, 3 females). Basic criteria for WS clinical diagnosis were coexistence of insulin-treated diabetes mellitus and optic atrophy occurring before 15 years of age. Genetic analysis for WFS1 was performed by direct sequencing. Molecular sequencing revealed 5 heterozygous compound and 3 homozygous mutations. All of them were located in exon 8, except one in exon 4. In one proband only an heterozygous mutation (A684V) was found. Two new variants c.2663 C>A and c.1381 A>C were detected. CONCLUSIONS/SIGNIFICANCE: Our study increases the spectrum of WFS1 mutations with two novel variants. The male patient carrying the compound mutation [c.1060_1062delTTC]+[c.2663 C>A] showed the most severe phenotype: diabetes mellitus, optic atrophy (visual acuity 5/10), deafness with deep auditory bilaterally 8000 Hz, diabetes insipidus associated to reduced volume of posterior pituitary and pons. He died in bed at the age of 13 years. The other patient carrying the compound mutation [c.409_424dup16]+[c.1381 A>C] showed a less severe phenotype (DM, OA)

    Derivation of a Myeloid Cell-Binding Adenovirus for Gene Therapy of Inflammation

    Get PDF
    The gene therapy field is currently limited by the lack of vehicles that permit efficient gene delivery to specific cell or tissue subsets. Native viral vector tropisms offer a powerful platform for transgene delivery but remain nonspecific, requiring elevated viral doses to achieve efficacy. In order to improve upon these strategies, our group has focused on genetically engineering targeting domains into viral capsid proteins, particularly those based on adenovirus serotype 5 (Ad5). Our primary strategy is based on deletion of the fiber knob domain, to eliminate broad tissue specificity through the human coxsackie-and-adenovirus receptor (hCAR), with seamless incorporation of ligands to re-direct Ad tropism to cell types that express the cognate receptors. Previously, our group and others have demonstrated successful implementation of this strategy in order to specifically target Ad to a number of surface molecules expressed on immortalized cell lines. Here, we utilized phage biopanning to identify a myeloid cell-binding peptide (MBP), with the sequence WTLDRGY, and demonstrated that MBP can be successfully incorporated into a knob-deleted Ad5. The resulting virus, Ad.MBP, results in specific binding to primary myeloid cell types, as well as significantly higher transduction of these target populations ex vivo, compared to unmodified Ad5. These data are the first step in demonstrating Ad targeting to cell types associated with inflammatory disease
    corecore