10,111 research outputs found

    Spectral Properties of M87 Using Two-Component Flow

    Full text link
    We fit the observational data for M87 using two-component advective disk model. We show that the flat spectrum from the nucleus of M87 is due to synchrotron radiation produced by non-thermal electrons in the CENBOL. The non-thermal distribution is produced due to acceleration of electrons across the shock in a sub-Keplerian flow.Comment: 4 Pages, 1 Figures, Proceeding of the 2nd Kolkata Conference on "Observational Evidence for the Black Holes in the Universe", Published in AIP, 200

    A CM based equalizer for space-time spreading over channels with inter-Symbol interference

    Get PDF
    Space-time block coding (STBC) and a number of derivative techniques have been developed to maximize the diversity gain of a multi-input multi-output (MIMO) channel. This was later generalized for multi-user DS-CDMA systems through space-time spreading (STS), [3] and [4], which assumed flat fading as well as the availability of full channel state information (CSI) at the receiver. This paper focuses on the development of a blind chip-rate method for the equalization of STS over channels with inter-symbol interference (ISI). Simulation results are presented to demonstrate the convergence and noise resilience of the derived algorithm

    Consistent 3D Quantum Gravity on Lens Spaces

    Full text link
    We study non-perturbative quantization of 3d gravity with positive cosmological constant (de Sitter space being the prototype vacuum solution, whose Euclideanization of course gives the three sphere) on the background topology of lens space, which is a three spheres modulo a discrete group. Instead of the strategy followed by a recent work \cite{Castro:2011xb}, which compares results in the second and first order formulations of gravity, we concentrate on the later solely. We note, as a striking feature, that the quantization, that relies heavily on the axiomatics of topological quantum field theory (TQFT) can only be consistently carried by augmenting the conventional theory by an additional topological term coupled through a dimensionless parameter. More importantly the introduction of this additional parameter renders the theory finite.Comment: New section and references added. Accepted in Phys. Rev. D for publicatio

    Boosts, Schwarzschild Black Holes and Absorption cross-sections in M theory

    Get PDF
    DD dimensional neutral black strings wrapped on a circle are related to (D1)(D-1) dimensional charged black holes by boosts. We show that the boost has to be performed in the covering space and the boosted coordinate has to be compactified on a circle with a Lorentz contracted radius. Using this fact we show that the transition between Schwarzschild black holes to black p-branes observed recently in M theory is the well-known black hole- black string transition viewed in a boosted frame. In a similar way the correspondence point where an excited string state goes over to a neutral black hole is mapped exactly to the correspondence point for black p-branes. In terms of the pp brane quantities the equation of state for an excited string state becomes identical to that of a 3+1 dimensional massless gas for all pp. Finally, we show how boosts can be used to relate Hawking radiation rates. Using the known microscopic derivation of absorption by extremal 3-branes and near-extremal 5D holes with three large charges we provide a microscopic derivation of absorption of 0-branes by seven and five dimensional Schwarzschild black holes in a certain regime.Comment: Some references added, minor clarifications (harvmac, 16 pages

    Do the mildly superluminal VLBI knots exclude ultrarelativistic blazar jets?

    Full text link
    We compute the effective values of apparent transverse velocity and flux boosting factors for the VLBI radio knots of blazar jets, by integrating over the angular distributions of these quantities across the widths of jets with finite opening angles but constant velocities. For high bulk Lorentz factors (Gamma > 10) variations across the jet can be quite large if the opening angle, omega, is even a few degrees on sub-parsec scales. The resulting apparent speeds are often much lower than those obtained from the usual analyses that ignore the finite jet opening angles. We can thus reconcile the usually observed subluminal or mildly superluminal speeds with the very high (>~ 20) Gamma factors, required by the inverse Compton origin and rapid variability of TeV fluxes, as well as by intraday radio variability. Thus it is possible to associate the VLBI radio knots directly with shocks in the ultra-relativistic main jet flow, without invoking very rapid jet deceleration on parsec scales, or extremely unlikely viewing angles.Comment: 10 pages, 1 figure, to appear in ApJ Letters, Nov. 10 2004 issu

    Surface state scattering by adatoms on noble metals

    Full text link
    When surface state electrons scatter at perturbations, such as magnetic or nonmagnetic adatoms or clusters on surfaces, an electronic resonance, localized at the adatom site, can develop below the bottom of the surface state band for both spin channels. In the case of adatoms, these states have been found very recently in scanning tunneling spectroscopy experiments\cite{limot,olsson} for the Cu(111) and Ag(111) surfaces. Motivated by these experiments, we carried out a systematic theoretical investigation of the electronic structure of these surface states in the presence of magnetic and non-magnetic atoms on Cu(111). We found that Ca and all 3dd adatoms lead to a split-off state at the bottom of the surface band which is, however, not seen for the spsp elements Ga and Ge. The situation is completely reversed if the impurities are embedded in the surface: Ga and Ge are able to produce a split-off state whereas the 3dd impurities do not. The resonance arises from the s-state of the impurities and is explained in terms of strength and interaction nature (attraction or repulsion) of the perturbing potential.Comment: 6 pages, 5 figure

    Bound on Hardy's non-locality from the principle of Information Causality

    Full text link
    Recently,the principle of nonviolation of information causality [Nature 461,1101 (2009)], has been proposed as one of the foundational properties of nature. We explore the Hardy's nonlocality theorem for two qubit systems, in the context of generalised probability theory, restricted by the principle of nonviolation of information causality. Applying, a sufficient condition for information causality violation, we derive an upper bound on the maximum success probability of Hardy's nonlocality argument. We find that the bound achieved here is higher than that allowed by quantum mechanics,but still much less than what the nosignaling condition permits. We also study the Cabello type nonlocality argument (a generalization of Hardy's argument) in this context.Comment: Abstract modified, changes made in the conclusion, throughout the paper we clarified that the condition used by us is protocal based and is only a sufficient condition for the violation of information causalit
    corecore