5,674 research outputs found
Consensus clustering and functional interpretation of gene-expression data
Microarray analysis using clustering algorithms can suffer from lack of inter-method consistency in assigning related gene-expression profiles to clusters. Obtaining a consensus set of clusters from a number of clustering methods should improve confidence in gene-expression analysis. Here we introduce consensus clustering, which provides such an advantage. When coupled with a statistically based gene functional analysis, our method allowed the identification of novel genes regulated by NFκB and the unfolded protein response in certain B-cell lymphomas
An Analytical Study for Subsonic Oblique Wing Transport Concept
The oblique wing concept has been investigated for subsonic transport application for a cruise Mach number of 0.95. Three different mission applications were considered and the concept analyzed against the selected mission requirements. Configuration studies determined the best area of applicability to be a commercial passenger transport mission. The critical parameter for the oblique wing concept was found to be aspect ratio which was limited to a value of 6.0 due to aeroelastic divergence. Comparison of the concept final configuration was made with fixed winged configurations designed to cruise at Mach 0.85 and 0.95. The crossover Mach number for the oblique wing concept was found to be Mach 0.91 for takeoff gross weight and direct operating cost. Benefits include reduced takeoff distance, installed thrust and mission block fuel and improved community noise characteristics. The variable geometry feature enables the final configuration to increase range by 10% at Mach 0.712 and to increase endurance by as much as 44%
SU(N) chiral gauge theories on the lattice
We extend the construction of lattice chiral gauge theories based on
non-perturbative gauge fixing to the non-abelian case. A key ingredient is that
fermion doublers can be avoided at a novel type of critical point which is only
accessible through gauge fixing, as we have shown before in the abelian case.
The new ingredient allowing us to deal with the non-abelian case as well is the
use of equivariant gauge fixing, which handles Gribov copies correctly, and
avoids Neuberger's no-go theorem. We use this method in order to gauge fix the
non-abelian group (which we will take to be SU(N)) down to its maximal abelian
subgroup. Obtaining an undoubled, chiral fermion content requires us to
gauge-fix also the remaining abelian gauge symmetry. This modifies the
equivariant BRST identities, but their use in proving unitarity remains intact,
as we show in perturbation theory. On the lattice, equivariant BRST symmetry as
well as the abelian gauge invariance are broken, and a judiciously chosen
irrelevant term must be added to the lattice gauge-fixing action in order to
have access to the desired critical point in the phase diagram. We argue that
gauge invariance is restored in the continuum limit by adjusting a finite
number of counter terms. We emphasize that weak-coupling perturbation theory
applies at the critical point which defines the continuum limit of our lattice
chiral gauge theory.Comment: 39 pages, 3 figures, A number of clarifications adde
Stable isotopic evidence for nutrient rejuvenation and long-term resilience on Tikopia Island (Southeast Solomon Islands)
Tikopia Island, a small and relatively isolated Polynesian Outlier in the Southeast Solomon Islands, supports a remarkably dense human population with minimal external support. Examining long-term trends in human land use on Tikopia through archaeological datasets spanning nearly 3000 years presents an opportunity to investigate pathways to long-term sustainability in a tropical island setting. Here, we trace nutrient dynamics across Tikopia’s three pre-European contact phases (Kiki, Sinapupu, Tuakamali) via stable carbon and nitrogen isotope analysis of commensal Pacific rat (Rattus exulans) and domestic pig (Sus scrofa) bone and tooth dentine collagen. Our results show a decline in δ15N values from the Kiki (c. 800 BC-AD 100) to Sinapupu (c. AD 100–1200) phases, consistent with long-term commensal isotope trends observed on other Polynesian islands. However, increased δ15N coupled with lower δ13C values in the Tuakamali Phase (c. AD 1200–1800) point to a later nutrient rejuvenation, likely tied to dramatic transformations in agriculture and land use at the Sinapupu-Tuakamali transition. This study offers new, quantifiable evidence for deep-time land and resource management decisions on Tikopia and subsequent impacts on island nutrient status and long-term sustainability.1. Introduction 2. Materials and Methods 2.1. Sample Selection 2.2. Taxonomic Identification via Zooarchaeology by Mass Spectrometry (ZooMS) 2.3. Carbon and Nitrogen Stable Isotope Analysis of Bone and Tooth Dentine Collagen 3. Result
M-Dwarf Fast Rotators and the Detection of Relatively Young Multiple M-Star Systems
We have searched the Kepler light curves of ~3900 M-star targets for evidence
of periodicities that indicate, by means of the effects of starspots, rapid
stellar rotation. Several analysis techniques, including Fourier transforms,
inspection of folded light curves, 'sonograms', and phase tracking of
individual modulation cycles, were applied in order to distinguish the
periodicities due to rapid rotation from those due to stellar pulsations,
eclipsing binaries, or transiting planets. We find 178 Kepler M-star targets
with rotation periods, P_rot, of < 2 days, and 110 with P_rot < 1 day. Some 30
of the 178 systems exhibit two or more independent short periods within the
same Kepler photometric aperture, while several have three or more short
periods. Adaptive optics imaging and modeling of the Kepler pixel response
function for a subset of our sample support the conclusion that the targets
with multiple periods are highly likely to be relatively young physical binary,
triple, and even quadruple M star systems. We explore in detail the one object
with four incommensurate periods all less than 1.2 days, and show that two of
the periods arise from one of a close pair of stars, while the other two arise
from the second star, which itself is probably a visual binary. If most of
these M-star systems with multiple periods turn out to be bound M stars, this
could prove a valuable way of discovering young hierarchical M-star systems;
the same approach may also be applicable to G and K stars. The ~5% occurrence
rate of rapid rotation among the ~3900 M star targets is consistent with spin
evolution models that include an initial contraction phase followed by magnetic
braking, wherein a typical M star can spend several hundred Myr before spinning
down to periods longer than 2 days.Comment: 17 pages, 12 figures, 2 tables; accepted for publication in The
Astrophysical Journa
Inelastic collapse of a randomly forced particle
We consider a randomly forced particle moving in a finite region, which
rebounds inelastically with coefficient of restitution r on collision with the
boundaries. We show that there is a transition at a critical value of r,
r_c\equiv e^{-\pi/\sqrt{3}}, above which the dynamics is ergodic but beneath
which the particle undergoes inelastic collapse, coming to rest after an
infinite number of collisions in a finite time. The value of r_c is argued to
be independent of the size of the region or the presence of a viscous damping
term in the equation of motion.Comment: 4 pages, REVTEX, 2 EPS figures, uses multicol.sty and epsf.st
First-order phase transition in a 2D random-field Ising model with conflicting dynamics
The effects of locally random magnetic fields are considered in a
nonequilibrium Ising model defined on a square lattice with nearest-neighbors
interactions. In order to generate the random magnetic fields, we have
considered random variables that change randomly with time according to
a double-gaussian probability distribution, which consists of two single
gaussian distributions, centered at and , with the same width
. This distribution is very general, and can recover in appropriate
limits the bimodal distribution () and the single gaussian one
(). We performed Monte Carlo simulations in lattices with linear sizes in
the range . The system exhibits ferromagnetic and paramagnetic
steady states. Our results suggest the occurence of first-order phase
transitions between the above-mentioned phases at low temperatures and large
random-field intensities , for some small values of the width .
By means of finite size scaling, we estimate the critical exponents in the
low-field region, where we have continuous phase transitions. In addition, we
show a sketch of the phase diagram of the model for some values of .Comment: 13 pages, 9 figures, accepted for publication in JSTA
A Pre-Protostellar Core in L1551
Large field surveys of NH3, C2S, 13CO and C18O in the L1551 dark cloud have
revealed a prolate, pre-protostellar molecular core (L1551-MC) in a relatively
quiescent region to the northwest of the well-known IRS 5 source. The kinetic
temperature is measured to be 9K, the total mass is ~2Msun, and the average
particle density is 10^4-10^5 cm^(-3). L1551-MC is 2.25' x 1.11' in projection
oriented at a position angle of 133deg. The turbulent motions are on the order
of the sound speed in the medium and contain 4% of the gravitational energy,
E_{grav}, of the core. The angular momentum vector is projected along the major
axis of L1551-MC corresponding to a rotational energy of 2.5E-3(sin
i)^(-2)|E_{grav}|. The thermal energy constitutes about a third of |E_{grav}|
and the virial mass is approximately equal to the total mass. L1551-MC is
gravitationally bound and in the absence of strong, ~160 microgauss, magnetic
fields will likely contract on a ~0.3 Myr time scale. The line profiles of many
molecular species suggest that the cold quiescent interior is surrounded by a
dynamic, perhaps infalling envelope which is embedded within the ambient
molecular gas of L1551.Comment: 27 pages, 7 figures, ApJ accepte
Glassy behaviour in an exactly solved spin system with a ferromagnetic transition
We show that applying simple dynamical rules to Baxter's eight-vertex model
leads to a system which resembles a glass-forming liquid. There are analogies
with liquid, supercooled liquid, glassy and crystalline states. The disordered
phases exhibit strong dynamical heterogeneity at low temperatures, which may be
described in terms of an emergent mobility field. Their dynamics are
well-described by a simple model with trivial thermodynamics, but an emergent
kinetic constraint. We show that the (second order) thermodynamic transition to
the ordered phase may be interpreted in terms of confinement of the excitations
in the mobility field. We also describe the aging of disordered states towards
the ordered phase, in terms of simple rate equations.Comment: 11 page
- …