4 research outputs found
Additional file 2: Table S1. of The descriptive epidemiology of accelerometer-measured physical activity in older adults
Differences between participants with and without accelerometry at 3rd health check, EPIC-Norfolk. (XLSX 17 kb
Additional file 1: Figure S1. of The descriptive epidemiology of accelerometer-measured physical activity in older adults
Example accelerometer file showing time segments classified as non-wear using the 90-min and the 60-min zero string criterions. (JPG 80 kb
PRomotion Of Physical activity through structured Education with differing Levels of ongoing Support for people at high risk of type 2 diabetes (PROPELS): study protocol for a randomized controlled trial.
BACKGROUND: The prevention of type 2 diabetes is recognised as a health care priority. Lifestyle change has proven effective at reducing the risk of type 2 diabetes, but limitations in the current evidence have been identified in: the promotion of physical activity; availability of interventions that are suitable for commissioning and implementation; availability of evidence-based interventions using new technologies; and physical activity promotion among ethnic minorities. We aim to investigate whether a structured education programme with differing levels of ongoing support, including text-messaging, can increase physical activity over a 4 year period in a multi-ethnic population at high risk of diabetes. METHODS/DESIGN: A multi-centre randomised controlled trial, with follow-up at 12 and 48 months. The primary outcome is change in ambulatory activity at 48 months. Secondary outcomes include changes to markers of metabolic, cardiovascular, anthropometric and psychological health along with cost-effectiveness. Participants aged 40-74 years for White European, or 25-74 years for South Asians, with an HbA1c value of between 6.0 and < 6.4 % (42 and 47 mmol/mol) or with a previously recorded plasma glucose level or HbA1c value within the high risk (prediabetes) range within the last five years, are invited to take part in the trial. Participants are identified through primary care, using an automated diabetes risk score within their practice database, or from a database of previous research participants. Participants are randomly assigned to either: 1) the control group who receive a detailed advice leaflet; 2) the Walking Away group, who receive the same leaflet and attend a 3 hour structured education programme with annual maintenance sessions delivered in groups; or 3) the Walking Away Plus group, who receive the leaflet, attend the structured education programme with annual maintenance sessions, plus receive follow-on support through highly-tailored text-messaging and telephone calls to help to aid pedometer use and behaviour change. DISCUSSION: This study will provide new evidence for the long-term effectiveness of a structured education programme focused on physical activity, conducted within routine care in a multi-ethnic population in the UK. It will also investigate the impact of different levels of ongoing support and the cost-effectiveness of each intervention. TRIAL REGISTRATION: ISRCTN83465245 Trial registration date: 14/06/2012
Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals
Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10(-8)-1.2×10(-43)). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10(-4)). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10(-3), n = 22,044), increased triglycerides (p = 2.6×10(-14), n = 93,440), increased waist-to-hip ratio (p = 1.8×10(-5), n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10(-3), n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5×10(-13), n = 96,748) and decreased BMI (p = 1.4×10(-4), n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance