14,719 research outputs found

    Nonlinear stability of flock solutions in second-order swarming models

    Get PDF
    In this paper we consider interacting particle systems which are frequently used to model collective behavior in animal swarms and other applications. We study the stability of orientationally aligned formations called flock solutions, one of the typical patterns emerging from such dynamics. We provide an analysis showing that the nonlinear stability of flocks in second-order models entirely depends on the linear stability of the first-order aggregation equation. Flocks are shown to be nonlinearly stable as a family of states under reasonable assumptions on the interaction potential. Furthermore, we numerically verify that commonly used potentials satisfy these hypotheses and investigate the nonlinear stability of flocks by an extensive case-study of uniform perturbations.Comment: 22 pages, 1 figure, 1 tabl

    A blob method for diffusion

    Get PDF
    As a counterpoint to classical stochastic particle methods for diffusion, we develop a deterministic particle method for linear and nonlinear diffusion. At first glance, deterministic particle methods are incompatible with diffusive partial differential equations since initial data given by sums of Dirac masses would be smoothed instantaneously: particles do not remain particles. Inspired by classical vortex blob methods, we introduce a nonlocal regularization of our velocity field that ensures particles do remain particles, and we apply this to develop a numerical blob method for a range of diffusive partial differential equations of Wasserstein gradient flow type, including the heat equation, the porous medium equation, the Fokker-Planck equation, the Keller-Segel equation, and its variants. Our choice of regularization is guided by the Wasserstein gradient flow structure, and the corresponding energy has a novel form, combining aspects of the well-known interaction and potential energies. In the presence of a confining drift or interaction potential, we prove that minimizers of the regularized energy exist and, as the regularization is removed, converge to the minimizers of the unregularized energy. We then restrict our attention to nonlinear diffusion of porous medium type with at least quadratic exponent. Under sufficient regularity assumptions, we prove that gradient flows of the regularized energies converge to solutions of the porous medium equation. As a corollary, we obtain convergence of our numerical blob method, again under sufficient regularity assumptions. We conclude by considering a range of numerical examples to demonstrate our method's rate of convergence to exact solutions and to illustrate key qualitative properties preserved by the method, including asymptotic behavior of the Fokker-Planck equation and critical mass of the two-dimensional Keller-Segel equation

    Existence of Compactly Supported Global Minimisers for the Interaction Energy

    Full text link
    The existence of compactly supported global minimisers for continuum models of particles interacting through a potential is shown under almost optimal hypotheses. The main assumption on the potential is that it is catastrophic, or not H-stable, which is the complementary assumption to that in classical results on thermodynamic limits in statistical mechanics. The proof is based on a uniform control on the local mass around each point of the support of a global minimiser, together with an estimate on the size of the "gaps" it may have. The class of potentials for which we prove existence of global minimisers includes power-law potentials and, for some range of parameters, Morse potentials, widely used in applications. We also show that the support of local minimisers is compact under suitable assumptions.Comment: Final version after referee reports taken into accoun

    Nonlinear Aggregation-Diffusion Equations: Radial Symmetry and Long Time Asymptotics

    Full text link
    We analyze under which conditions equilibration between two competing effects, repulsion modeled by nonlinear diffusion and attraction modeled by nonlocal interaction, occurs. This balance leads to continuous compactly supported radially decreasing equilibrium configurations for all masses. All stationary states with suitable regularity are shown to be radially symmetric by means of continuous Steiner symmetrization techniques. Calculus of variations tools allow us to show the existence of global minimizers among these equilibria. Finally, in the particular case of Newtonian interaction in two dimensions they lead to uniqueness of equilibria for any given mass up to translation and to the convergence of solutions of the associated nonlinear aggregation-diffusion equations towards this unique equilibrium profile up to translations as t→∞t\to\infty

    Numerical Study of a Particle Method for Gradient Flows

    Get PDF
    We study the numerical behaviour of a particle method for gradient flows involving linear and nonlinear diffusion. This method relies on the discretisation of the energy via non-overlapping balls centred at the particles. The resulting scheme preserves the gradient flow structure at the particle level, and enables us to obtain a gradient descent formulation after time discretisation. We give several simulations to illustrate the validity of this method, as well as a detailed study of one-dimensional aggregation-diffusion equations.Comment: 27 pages, 21 figure

    Uniform convergence to equilibrium for granular media

    Get PDF
    We study the long time asymptotics of a nonlinear, nonlocal equation used in the modelling of granular media. We prove a uniform exponential convergence to equilibrium for degenerately convex and non convex interaction or confinement potentials, improving in particular results by J. A. Carrillo, R. J. McCann and C. Villani. The method is based on studying the dissipation of the Wasserstein distance between a solution and the steady state
    • …
    corecore