519 research outputs found

    Persistence of Covalent Bonding in Liquid Silicon Probed by Inelastic X-ray Scattering

    Full text link
    Metallic liquid silicon at 1787K is investigated using x-ray Compton scattering. An excellent agreement is found between the measurements and the corresponding Car-Parrinello molecular dynamics simulations. Our results show persistence of covalent bonding in liquid silicon and provide support for the occurrence of theoretically predicted liquid-liquid phase transition in supercooled liquid states. The population of covalent bond pairs in liquid silicon is estimated to be 17% via a maximally-localized Wannier function analysis. Compton scattering is shown to be a sensitive probe of bonding effects in the liquid state.Comment: 5pages, 3 postscript figure

    Global-local dynamics in the transformation of the Jakarta Metropolitan Area into a global city-region

    Get PDF
    This paper investigates the way in which factors at the global and local level interact in the emergence and development of “global city-regions”, which are deemed to be the contemporary growth machines of the global economy. To this end, this paper takes the Jakarta metropolitan area (JMA) as a case to investigate its evolution in the context of the intertwined dynamics of foreign direct investment (FDI) inflow and state intervention over the past three decades. The findings indicate that from a macro-level perspective the JMA has maintained its position as the country’s hotspot for manufacturing investment embedded in East Asian production networks. In addition, we find that the national state has continuously privileged the JMA as the main grounds for national economic development in spite of the country’s shifting political system. We reveal how the nexus between “global” forces (incoming FDI) and “local” conditions (the state’s strategic intervention) has led to the development and restructuring of the JMA as a global city-region

    Evaluation of the Sustaining Effects of Tai Chi Qigong in the Sixth Month in Promoting Psychosocial Health in COPD Patients: A Single-Blind, Randomized Controlled Trial

    Get PDF
    Objectives. To evaluate the sustaining effects of Tai Chi Qigong (TCQ) in improving the psychosocial health in chronic obstructive pulmonary disease (COPD) patients in the sixth month. Background. COPD affects both physical and emotional aspects of life. Measures to minimize patients' suffering need to be implemented. Methods. 206 COPD patients were randomly assigned into three groups: TCQ group, exercise group, and control group. The TCQ group completed a three-month TCQ program, the exercise group practiced breathing and walking exercise, and the control group received usual care. Results. Significant group-by-time interactions in quality of life (QOL) using St. George's respiratory questionnaire (P = 0.002) and the perceived social support from friends using multidimensional scale of perceived social support (P = 0.04) were noted. Improvements were observed in the TCQ group only. Conclusions. TCQ has sustaining effects in improving psychosocial health; it is also a useful and appropriate exercise for COPD patients

    Effects of metallic spacer in layered superconducting Sr2(Mgy_yTi1y_{1-y})O3FeAs

    Full text link
    The highly two-dimensional superconducting system Sr2(Mgy_yTi1y_{1-y})O3FeAs, recently synthesized in the range of 0.2 < y < 0.5, shows an Mg concentration-dependent TcT_c. Reducing the Mg concentration from y=0.5 leads to a sudden increase in TcT_c, with a maximum TcT_c ~40 K at y=0.2. Using first principles calculations, the unsynthesized stoichiometric y=0 and the substoichiometric y=0.5 compounds have been investigated. For the 50% Mg-doped phase (y=0.5), Sr2(Mgy_yTi1y_{1-y})O3 layers are completely insulating spacers between FeAs layers, leading to the fermiology such as that found for other Fe pnictides. At y=0, representing a phase with metallic Sr2TiO3 layers, the Γ\Gamma-centered Fe-derived Fermi surfaces (FSs) considerably shrink or disappear. Instead, three Γ\Gamma-centered Ti FSs appear, and in particular two of them have similar size, like in MgB2. Interestingly, FSs have very low Fermi velocity in large fractions: the lowest being 0.6×106\times10^6 cm/s. Furthermore, our fixed spin moment calculations suggest the possibility of magnetic ordering, with magnetic Ti and nearly nonmagnetic Fe ions. These results indicate a crucial role of Sr2(Mgy_yTi1y_{1-y})O3 layers in this superconductivity.Comment: 7 pages; Proceedings of ICSM-201

    A hop-count based positioning algorithm for wireless ad-hoc networks

    Get PDF
    We propose a range-free localization algorithm for a wireless ad-hoc network utilizing the hop-count metric’s ability to indicate proximity to anchors (i.e., nodes with known positions). In traditional sense, hop-count generally means the number of intermediate routers a datagram has to go through between its source and the destination node. We analytically show that hop-count could be used to indicate proximity relative to an anchor node. Our proposed algorithm is computationally feasible for resource constrained wireless ad-hoc nodes, and gives reasonable accuracy. We perform both real experiments and simulations to evaluate the algorithm’s performance. Experimental results show that our algorithm outperforms similar proximity based algorithms utilizing received signal strength and expected transmission count. We also analyze the impact of various parameters like the number of anchor nodes, placements of anchor nodes and varying transmission powers of the nodes on the hop-count based localization algorithm’s performance through simulation

    Sustaining effective COVID-19 control in Malaysia through large-scale vaccination

    Get PDF
    Introduction: As of 3rd June 2021, Malaysia is experiencing a resurgence of COVID-19 cases. In response, the federal government has implemented various non-pharmaceutical interventions (NPIs) under a series of Movement Control Orders and, more recently, a vaccination campaign to regain epidemic control. In this study, we assessed the potential for the vaccination campaign to control the epidemic in Malaysia and four high-burden regions of interest, under various public health response scenarios. Methods: A modified susceptible-exposed-infectious-recovered compartmental model was developed that included two sequential incubation and infectious periods, with stratification by clinical state. The model was further stratified by age and incorporated population mobility to capture NPIs and micro-distancing (behaviour changes not captured through population mobility). Emerging variants of concern (VoC) were included as an additional strain competing with the existing wild-type strain. Several scenarios that included different vaccination strategies (i.e. vaccines that reduce disease severity and/or prevent infection, vaccination coverage) and mobility restrictions were implemented. Results: The national model and the regional models all fit well to notification data but underestimated ICU occupancy and deaths in recent weeks, which may be attributable to increased severity of VoC or saturation of case detection. However, the true case detection proportion showed wide credible intervals, highlighting incomplete understanding of the true epidemic size. The scenario projections suggested that under current vaccination rates complete relaxation of all NPIs would trigger a major epidemic. The results emphasise the importance of micro-distancing, maintaining mobility restrictions during vaccination roll-out and accelerating the pace of vaccination for future control. Malaysia is particularly susceptible to a major COVID-19 resurgence resulting from its limited population immunity due to the country's historical success in maintaining control throughout much of 2020

    Thin-Film Metamaterials called Sculptured Thin Films

    Full text link
    Morphology and performance are conjointed attributes of metamaterials, of which sculptured thin films (STFs) are examples. STFs are assemblies of nanowires that can be fabricated from many different materials, typically via physical vapor deposition onto rotating substrates. The curvilinear--nanowire morphology of STFs is determined by the substrate motions during fabrication. The optical properties, especially, can be tailored by varying the morphology of STFs. In many cases prototype devices have been fabricated for various optical, thermal, chemical, and biological applications.Comment: to be published in Proc. ICTP School on Metamaterials (Augsut 2009, Sibiu, Romania
    corecore