94,991 research outputs found
AlAsSb avalanche photodiodes with a sub-mV/K temperature coefficient of breakdown voltage
The temperature dependence of dark current and avalanche gain were measured on AlAsSb p-i-n diodes with avalanche region widths of 80 and 230 nm. Measurements at temperatures ranging from 77 to 295 K showed that the dark current decreases rapidly with reducing temperature while avalanche gain exhibits a weak temperature dependence. No measurable band to band tunneling current was observed in the thinner diodes at an electric field of 1.07 MV/cm, corresponding to a bias of 95% of the breakdown voltage. Temperature coefficients of breakdown voltage of 0.95 and 1.47 mV/K were obtained from 80 and 230 nm diodes, respectively. These are significantly lower than a range of semiconductor materials with similar avalanche region widths. Our results demonstrated the potential of using thin AlAsSb avalanche regions to achieve low temperature coefficient of breakdown voltage without suffering from high band to band tunneling current
Testing the Empirical Shock Arrival Model using Quadrature Observations
The empirical shock arrival (ESA) model was developed based on quadrature
data from Helios (in-situ) and P-78 (remote-sensing) to predict the Sun-Earth
travel time of coronal mass ejections (CMEs) [Gopalswamy et al. 2005a]. The ESA
model requires earthward CME speed as input, which is not directly measurable
from coronagraphs along the Sun-Earth line. The Solar Terrestrial Relations
Observatory (STEREO) and the Solar and Heliospheric Observatory (SOHO) were in
quadrature during 2010 - 2012, so the speeds of Earth-directed CMEs were
observed with minimal projection effects. We identified a set of 20 full halo
CMEs in the field of view of SOHO that were also observed in quadrature by
STEREO. We used the earthward speed from STEREO measurements as input to the
ESA model and compared the resulting travel times with the observed ones from
L1 monitors. We find that the model predicts the CME travel time within about
7.3 hours, which is similar to the predictions by the ENLIL model. We also find
that CME-CME and CME-coronal hole interaction can lead to large deviations from
model predictions.Comment: 17 pages, 4 figures, 3 table
Surface transport coefficients for three-dimensional topological superconductors
We argue that surface spin and thermal conductivities of three-dimensional
topological superconductors are universal and topologically quantized at low
temperature. For a bulk winding number , there are "colors" of
surface Majorana fermions. Localization corrections to surface transport
coefficients vanish due to time-reversal symmetry (TRS). We argue that
Altshuler-Aronov interaction corrections vanish because TRS forbids color or
spin Friedel oscillations. We confirm this within a perturbative expansion in
the interactions, and to lowest order in a large- expansion. In both
cases, we employ an asymptotically exact treatment of quenched disorder effects
that exploits the chiral character unique to two-dimensional,
time-reversal-invariant Majorana surface states.Comment: 24 pages, 15 figures. v3: published versio
Gonadotropin and kisspeptin gene expression, but not GnRH, are impaired in cFOS deficient mice.
cFOS is a pleiotropic transcription factor, which binds to the AP1 site in the promoter of target genes. In the pituitary gonadotropes, cFOS mediates induction of FSHβ and GnRH receptor genes. Herein, we analyzed reproductive function in the cFOS-deficient mice to determine its role in vivo. In the pituitary cFOS is necessary for gonadotropin subunit expression, while TSHβ is unaffected. Additionally, cFOS null animals have the same sex-steroid levels, although gametogenesis is impeded. In the brain, cFOS is not necessary for GnRH neuronal migration, axon targeting, cell number, or mRNA levels. Conversely, cFOS nulls, particularly females, have decreased Kiss1 neuron numbers and lower Kiss1 mRNA levels. Collectively, our novel findings suggest that cFOS plays a cell-specific role at multiple levels of the hypothalamic-pituitary-gonadal axis, affecting gonadotropes but not thyrotropes in the pituitary, and kisspeptin neurons but not GnRH neurons in the hypothalamus, thereby contributing to the overall control of reproduction
- …
