465 research outputs found
Robustness of a local Fermi Liquid against Ferromagnetism and Phase Separation
We study the properties of Fermi Liquids with the microscopic constraint of a
local self-energy. In this case the forward scattering sum-rule imposes strong
limitations on the Fermi-Liquid parameters, which rule out any Pomeranchek
instabilities. For both attractive and repulsive interactions, ferromagnetism
and phase separation are suppressed. Superconductivity is possible in an s-wave
channel only. We also study the approach to the metal-insulator transition, and
find a Wilson ratio approaching 2. This ratio and other properties of
Sr_{1-x}La_xTiO_3 are all consistent with the local Fermi Liquid scenario.Comment: 4 pages (twocolumn format), can compile with or without epsf.sty
latex style file -- Postscript files: fig1.ps and fig2.p
Low-Temperature Spin Diffusion in a Spin-Polarized Fermi Gas
We present a finite temperature calculation of the transverse spin-diffusion
coefficient, , in a dilute degenerate Fermi gas in the presence of a
small external magnetic field, . While the longitudinal diffusion
coefficient displays the conventional low-temperature Fermi-liquid behavior,
, the corresponding results for show three
separate regimes: (a) for ; (b) , for and large spin-rotation
parameter , and (c) for and . Our results are qualitatively consistent with the available
experimental data in weakly spin-polarized and mixtures.Comment: 13 pages, REVTEX, 3 figures available upon request, RU-94-4
Dynamic Exponent of t-J and t-J-W Model
Drude weight of optical conductivity is calculated at zero temperature by
exact diagonalization for the two-dimensional t-J model with the two-particle
term, . For the ordinary t-J model with =0, the scaling of the Drude
weight for small doping concentration is
obtained, which indicates anomalous dynamic exponent =4 of the Mott
transition. When is switched on, the dynamic exponent recovers its
conventional value =2. This corresponds to an incoherent-to-coherent
transition associated with the switching of the two-particle transfer.Comment: LaTeX, JPSJ-style, 4 pages, 5 eps files, to appear in J. Phys. Soc.
Jpn. vol.67, No.6 (1998
Quasiparticle dynamics and phonon softening in FeSe superconductors
Quasiparticle dynamics of FeSe single crystals revealed by dual-color
transient reflectivity measurements ({\Delta}R/R) provides unprecedented
information on Fe-based superconductors. The amplitude of fast component in
{\Delta}R/R clearly tells a competing scenario between spin fluctuations and
superconductivity. Together with the transport measurements, the relaxation
time analysis further exhibits anomalous changes at 90 K and 230 K. The former
manifests a structure phase transition as well as the associated phonon
softening. The latter suggests a previously overlooked phase transition or
crossover in FeSe. The electron-phonon coupling constant {\lambda} is found to
be 0.16, identical to the value of theoretical calculations. Such a small
{\lambda} demonstrates an unconventional origin of superconductivity in FeSe.Comment: Final published version; 5 pages; 4 figure
Impact of interface traps on charge noise, mobility and percolation density in Ge/SiGe heterostructures
Hole spins in Ge/SiGe heterostructure quantum dots have emerged as promising
qubits for quantum computation. The strong spin-orbit coupling (SOC),
characteristic of heavy-hole states in Ge, enables fast and all-electrical
qubit control. However, SOC also increases the susceptibility of spin qubits to
charge noise. While qubit coherence can be significantly improved by operating
at sweet spots with reduced hyperfine or charge noise sensitivity, the latter
ultimately limits coherence, underlining the importance of understanding and
reducing charge noise at its source. In this work, we study the voltage-induced
hysteresis commonly observed in SiGe-based quantum devices and show that the
dominant charge fluctuators are localized at the semiconductor-oxide interface.
By applying increasingly negative gate voltages to Hall bar and quantum dot
devices, we investigate how the hysteretic filling of interface traps impacts
transport metrics and charge noise. We find that the gate-induced accumulation
and trapping of charge at the SiGe-oxide interface leads to an increased
electrostatic disorder, as probed by transport measurements, as well as the
activation of low-frequency relaxation dynamics, resulting in slow drifts and
increased charge noise levels. Our results highlight the importance of a
conservative device tuning strategy and reveal the critical role of the
semiconductor-oxide interface in SiGe heterostructures for spin qubit
applications
Direct Calculation of Spin-Stiffness for Spin-1/2 Heisenberg Models
The spin-stiffness of frustrated spin-1/2 Heisenberg models in one and two
dimensions is computed for the first time by exact diagonalizations on small
clusters that implement spin-dependent twisted boundary conditions. Finite-size
extrapolation to the thermodynamic limit yields a value of for
the spin-stiffness of the unfrustrated planar antiferromagnet. We also present
a general discussion of the linear-response theory for spin-twists, which
ultimately leads to the moment sum-rule.Comment: 11 pgs, TeX, LA-UR-94-94 (to be published in Phys. Rev. B
Hidden spin-current conservation in 2d Fermi liquids
We report the existence of regimes of the two dimensional Fermi liquid that
show unusual conservation of the spin current and may be tuned by varying some
parameter like the density of fermions. We show that for reasonable models of
the effective interaction the spin current may be conserved in general in 2d,
not only for a particular regime. Low temperature spin waves propagate
distinctively in these regimes and entirely new ``spin-acoustic'' modes are
predicted for scattering-dominated temperature ranges. These new
high-temperature propagating spin waves provide a clear signature for the
experimental search of such regimes.Comment: 4 pages, no figures, revised version, accepted for pub. in the PR
No Massive Companion to the Coherent Radio-Emitting M Dwarf GJ 1151
The recent detection of circularly polarized, long-duration (>8 hr)
low-frequency (~150 MHz) radio emission from the M4.5 dwarf GJ 1151 has been
interpreted as arising from a star-planet interaction via the electron
cyclotron maser instability. The existence or parameters of the proposed
planets have not been determined. Using 20 new HARPS-N observations, we put
99th-percentile upper limits on the mass of any close companion to GJ 1151 at
Msini < 5.6 M earth. With no stellar, brown dwarf, or giant planet companion
likely in a close orbit, our data are consistent with detected radio emission
emerging from a magnetic interaction between a short-period terrestrial-mass
planet and GJ 1151
Nodes of the Gap Function and Anomalies in Thermodynamic Properties of Superfluid He
Departures of thermodynamic properties of three-dimensional superfluid He
from the predictions of BCS theory are analyzed. Attention is focused on
deviations of the ratios and
from their BCS values, where is the pairing gap at zero
temperature, is the critical temperature, and and are the
superfluid and normal specific heats. We attribute these deviations to the
momentum dependence of the gap function , which becomes well
pronounced when this function has a pair of nodes lying on either side of the
Fermi surface. We demonstrate that such a situation arises if the P-wave
pairing interaction , evaluated at the Fermi surface, has a sign
opposite to that anticipated in BCS theory. Taking account of the momentum
structure of the gap function, we derive a closed relation between the two
ratios that contains no adjustable parameters and agrees with the experimental
data. Some important features of the effective pairing interaction are inferred
from the analysis.Comment: 17 pages, 4 figure
- …