398 research outputs found
Analytical Proof of Space-Time Chaos in Ginzburg-Landau Equations
We prove that the attractor of the 1D quintic complex Ginzburg-Landau
equation with a broken phase symmetry has strictly positive space-time entropy
for an open set of parameter values. The result is obtained by studying chaotic
oscillations in grids of weakly interacting solitons in a class of
Ginzburg-Landau type equations. We provide an analytic proof for the existence
of two-soliton configurations with chaotic temporal behavior, and construct
solutions which are closed to a grid of such chaotic soliton pairs, with every
pair in the grid well spatially separated from the neighboring ones for all
time. The temporal evolution of the well-separated multi-soliton structures is
described by a weakly coupled lattice dynamical system (LDS) for the
coordinates and phases of the solitons. We develop a version of normal
hyperbolicity theory for the weakly coupled LDSs with continuous time and
establish for them the existence of space-time chaotic patterns similar to the
Sinai-Bunimovich chaos in discrete-time LDSs. While the LDS part of the theory
may be of independent interest, the main difficulty addressed in the paper
concerns with lifting the space-time chaotic solutions of the LDS back to the
initial PDE. The equations we consider here are space-time autonomous, i.e. we
impose no spatial or temporal modulation which could prevent the individual
solitons in the grid from drifting towards each other and destroying the
well-separated grid structure in a finite time. We however manage to show that
the set of space-time chaotic solutions for which the random soliton drift is
arrested is large enough, so the corresponding space-time entropy is strictly
positive
An analytic Approach to Turaev's Shadow Invariant
In the present paper we extend the "torus gauge fixing approach" by Blau and
Thompson (Nucl. Phys. B408(1):345--390, 1993) for Chern-Simons models with base
manifolds M of the form M= \Sigma x S^1 in a suitable way. We arrive at a
heuristic path integral formula for the Wilson loop observables associated to
general links in M. We then show that the right-hand side of this formula can
be evaluated explicitly in a non-perturbative way and that this evaluation
naturally leads to the face models in terms of which Turaev's shadow invariant
is defined.Comment: 44 pages, 2 figures. Changes have been made in Sec. 2.3, Sec 2.4,
Sec. 3.4, and Sec. 3.5. Appendix C is ne
Capacity Bounded Grammars and Petri Nets
A capacity bounded grammar is a grammar whose derivations are restricted by
assigning a bound to the number of every nonterminal symbol in the sentential
forms. In the paper the generative power and closure properties of capacity
bounded grammars and their Petri net controlled counterparts are investigated
Link Invariants and Combinatorial Quantization of Hamiltonian Chern-Simons Theory
We define and study the properties of observables associated to any link in
(where is a compact surface) using the
combinatorial quantization of hamiltonian Chern-Simons theory. These
observables are traces of holonomies in a non commutative Yang-Mills theory
where the gauge symmetry is ensured by a quantum group. We show that these
observables are link invariants taking values in a non commutative algebra, the
so called Moduli Algebra. When these link invariants are pure
numbers and are equal to Reshetikhin-Turaev link invariants.Comment: 39, latex, 7 figure
Approximating Turaev-Viro 3-manifold invariants is universal for quantum computation
The Turaev-Viro invariants are scalar topological invariants of compact,
orientable 3-manifolds. We give a quantum algorithm for additively
approximating Turaev-Viro invariants of a manifold presented by a Heegaard
splitting. The algorithm is motivated by the relationship between topological
quantum computers and (2+1)-D topological quantum field theories. Its accuracy
is shown to be nontrivial, as the same algorithm, after efficient classical
preprocessing, can solve any problem efficiently decidable by a quantum
computer. Thus approximating certain Turaev-Viro invariants of manifolds
presented by Heegaard splittings is a universal problem for quantum
computation. This establishes a novel relation between the task of
distinguishing non-homeomorphic 3-manifolds and the power of a general quantum
computer.Comment: 4 pages, 3 figure
Sticker systems over monoids
Molecular computing has gained many interests among researchers since Head introduced the first theoretical model for DNA based computation using the splicing operation in 1987. Another model for DNA computing was proposed by using the sticker operation which Adlemanused in his successful experiment for the computation of Hamiltonian paths in a graph: a double stranded DNA sequence is composed by prolonging to the left and to the right a sequence of (single or double) symbols by using given single stranded strings or even more complex dominoes with sticky ends, gluing these ends together with the sticky ends of the current sequence according to a complementarity relation. According to this sticker operation, a language generative mechanism, called a sticker system, can be defined: a set of (incomplete) double-stranded sequences (axioms) and a set of pairs of single or double-stranded complementary sequences are given. The initial sequences are prolonged to the left and to the right by using sequences from the latter set, respectively. The iterations of these prolongations produce “computations” of possibly arbitrary length. These processes stop when a complete double stranded sequence is obtained. Sticker systems will generate only regular languages without restrictions. Additional restrictions can be imposed on the matching pairs of strands to obtain more powerful languages. Several types of sticker systems are shown to have the same power as regular grammars; one type is found to represent all linear languages whereas another one is proved to be able to represent any recursively enumerable language. The main aim of this research is to introduce and study sticker systems over monoids in which with each sticker operation, an element of a monoid is associated and a complete double stranded sequence is considered to be valid if the computation of the associated elements of the monoid produces the neutral element. Moreover, the sticker system over monoids is defined in this study
From simplicial Chern-Simons theory to the shadow invariant II
This is the second of a series of papers in which we introduce and study a
rigorous "simplicial" realization of the non-Abelian Chern-Simons path integral
for manifolds M of the form M = Sigma x S1 and arbitrary simply-connected
compact structure groups G. More precisely, we introduce, for general links L
in M, a rigorous simplicial version WLO_{rig}(L) of the corresponding Wilson
loop observable WLO(L) in the so-called "torus gauge" by Blau and Thompson
(Nucl. Phys. B408(2):345-390, 1993). For a simple class of links L we then
evaluate WLO_{rig}(L) explicitly in a non-perturbative way, finding agreement
with Turaev's shadow invariant |L|.Comment: 53 pages, 1 figure. Some minor changes and corrections have been mad
Bifurcation to Chaos in the complex Ginzburg-Landau equation with large third-order dispersion
We give an analytic proof of the existence of Shilnikov chaos in complex
Ginzburg-Landau equation subject to a large third-order dispersion
perturbation
Horseshoes for a class of nonuniformly expanding random dynamical systems on the circle
We propose a notion of random horseshoe for one-dimensional random dynamical
systems. We prove the abundance of random horseshoes for a class of circle
endomorphisms subject to additive noise, large enough to make the Lyapunov
exponent positive. In particular, we provide conditions which guarantee that
given any pair of disjoint intervals, for almost every noise realization, there
exists a positive density sequence of return times to these intervals such that
the induced dynamics are the full shift on two symbols.Comment: 31 pages, 0 figure
Large Fourier transforms never exactly realized by braiding conformal blocks
Fourier transform is an essential ingredient in Shor's factoring algorithm.
In the standard quantum circuit model with the gate set \{\U(2),
\textrm{CNOT}\}, the discrete Fourier transforms , can be realized exactly by
quantum circuits of size , and so can the discrete
sine/cosine transforms. In topological quantum computing, the simplest
universal topological quantum computer is based on the Fibonacci
(2+1)-topological quantum field theory (TQFT), where the standard quantum
circuits are replaced by unitary transformations realized by braiding conformal
blocks. We report here that the large Fourier transforms and the discrete
sine/cosine transforms can never be realized exactly by braiding conformal
blocks for a fixed TQFT. It follows that approximation is unavoidable to
implement the Fourier transforms by braiding conformal blocks
- …