research

Large Fourier transforms never exactly realized by braiding conformal blocks

Abstract

Fourier transform is an essential ingredient in Shor's factoring algorithm. In the standard quantum circuit model with the gate set \{\U(2), \textrm{CNOT}\}, the discrete Fourier transforms FN=(ωij)N×N,i,j=0,1,...,N1,ω=e2πiNF_N=(\omega^{ij})_{N\times N},i,j=0,1,..., N-1, \omega=e^{\frac{2\pi i}{N}}, can be realized exactly by quantum circuits of size O(n2),n=logNO(n^2), n=\textrm{log}N, and so can the discrete sine/cosine transforms. In topological quantum computing, the simplest universal topological quantum computer is based on the Fibonacci (2+1)-topological quantum field theory (TQFT), where the standard quantum circuits are replaced by unitary transformations realized by braiding conformal blocks. We report here that the large Fourier transforms FNF_N and the discrete sine/cosine transforms can never be realized exactly by braiding conformal blocks for a fixed TQFT. It follows that approximation is unavoidable to implement the Fourier transforms by braiding conformal blocks

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020
    Last time updated on 27/12/2021