328 research outputs found

    Gait measurements in the transverse plane using a wearable system: An experimental study of test-retest reliability

    Get PDF
    3D gait analysis comprises the study of kinematics in the sagittal, coronal, and transverse planes. The transverse plane measurements are usually less used and generally show the lowest reliability. Nevertheless, the knee and ankle joint center trajectories, in the transverse plane, provide new parameters that may be important in clinical gait analysis. The aim of this study is to analyze the test-retest variability of these parameters. Gait measurements were performed using H-Gait, a wearable system based on magnetic and inertial sensors. A normal weight and an overweight subject were recruited and were asked to walk at their preferred speed for 6 trials. For both of them, the angle between the right and left knee and ankle joint center trajectories were analyzed. Overall, results showed a standard deviation across trials always lower than 2°. This small standard deviation was found also in the overweight subject, for whom it is usually challenging to obtain reliable gait measurements. In addition, a greater knee angle between the right and left joint center trajectories was found in the overweight subject compared to the normal weight. The promising results of this study suggest that the new parameters introduced might be suitable to assess gait of subjects with different anthropometric characteristics

    Wearable sensors for gait analysis

    Get PDF
    Systems based on inertial sensors are increasingly used in motion analysis due to their low cost, portability and wearability. However, since accuracy is crucial in clinical gait analysis, it is important to assess it in new systems. The aim of this study is to compare the performances of a magnetic and inertial sensors system (MIMUs) to a gold standard, the electromechanical system STEP32. Results shows that spatio-temporal parameters are accurately estimated by the MIMUs system. Joint kinematics does not reach the accuracy of the STEP32 system. In fact, although MIMUs measurements on the knee and hip joints are clinically acceptable, they are not yet reliable for the ankle joint

    Wearable sensors for gait analysis: Comparison between a MIMUs system and a gold standard electromechanical system

    Get PDF
    Systems based on inertial sensors are increasingly used in motion analysis due to their low cost, portability and wearability. However, since accuracy is crucial in clinical gait analysis, it is important to assess it in new systems. The aim of this study is to compare the performances of a magnetic and inertial sensors system (MIMUs) to a gold standard, the electromechanical system STEP32. Results shows that spatio-temporal parameters are accurately estimated by the MIMUs system. Joint kinematics does not reach the accuracy of the STEP32 system. In fact, although MIMUs measurements on the knee and hip joints are clinically acceptable, they are not yet reliable for the ankle joint

    Terahertz electric-field driven dynamical multiferroicity in SrTiO3_3

    Full text link
    The emergence of collective order in matter is among the most fundamental and intriguing phenomena in physics. In recent years, the ultrafast dynamical control and creation of novel ordered states of matter not accessible in thermodynamic equilibrium is receiving much attention. Among those, the theoretical concept of dynamical multiferroicity has been introduced to describe the emergence of magnetization by means of a time-dependent electric polarization in non-ferromagnetic materials. In simple terms, a large amplitude coherent rotating motion of the ions in a crystal induces a magnetic moment along the axis of rotation. However, the experimental verification of this effect is still lacking. Here, we provide evidence of room temperature magnetization in the archetypal paraelectric perovskite SrTiO3_3 due to this mechanism. To achieve it, we resonantly drive the infrared-active soft phonon mode with intense circularly polarized terahertz electric field, and detect a large magneto-optical Kerr effect. A simple model, which includes two coupled nonlinear oscillators whose forces and couplings are derived with ab-initio calculations using self-consistent phonon theory at a finite temperature, reproduces qualitatively our experimental observations on the temporal and frequency domains. A quantitatively correct magnitude of the effect is obtained when one also considers the phonon analogue of the reciprocal of the Einsten - de Haas effect, also called the Barnett effect, where the total angular momentum from the phonon order is transferred to the electronic one. Our findings show a new path for designing ultrafast magnetic switches by means of coherent control of lattice vibrations with light.Comment: Main text: 10 pages, 4 figures, methods and 8 supplemental figure

    Millennial‐scale climate oscillations triggered by deglacial meltwater discharge in last glacial maximum simulations

    Get PDF
    Our limited understanding of millennial-scale variability in the context of the last glacial period can be explained by the lack of a reliable modeling framework to study abrupt climate changes under realistic glacial backgrounds. In this article, we describe a new set of long-run Last Glacial Maximum experiments where such climate shifts were triggered by different snapshots of ice-sheet meltwater derived from the early stages of the last deglaciation. Depending on the location and the magnitude of the forcing, we observe three distinct dynamical regimes and highlight a subtle window of opportunity where the climate can sustain oscillations between cold and warm modes. We identify the Eurasian Arctic and Nordic Seas regions as being most sensitive to meltwater discharge in the context of switching to a cold mode, compared to freshwater fluxes from the Laurentide ice sheets. These cold climates follow a consistent pattern in temperature, sea ice, and convection, and are largely independent from freshwater release as a result of effective AMOC collapse. Warm modes, on the other hand, show more complexity in their response to the regional pattern of the meltwater input, and within them, we observe significant differences linked to the reorganization of deep water formation sites and the subpolar gyre. Broadly, the main characteristics of the oscillations, obtained under full-glacial conditions with ice-sheet reconstruction derived meltwater patterns, share similar characteristics with δ18O records of the last glacial period, although our experiment design prevents detailed conclusions from being drawn on whether these represent actual Dansgaard-Oeschger events

    Does a difference in ice sheets between Marine Isotope Stages 3 and 5a affect the duration of stadials? Implications from hosing experiments

    Get PDF
    Glacial periods undergo frequent climate shifts between warm interstadials and cold stadials on a millennial timescale. Recent studies show that the duration of these climate modes varies with the background climate; a colder background climate and lower CO2 generally result in a shorter interstadial and a longer stadial through its impact on the Atlantic Meridional Overturning Circulation (AMOC). However, the duration of stadials is shorter during Marine Isotope Stage 3 (MIS3) than during MIS5, despite the colder climate in MIS3, suggesting potential control from other climate factors on the duration of stadials. In this study, we investigate the role of glacial ice sheets. For this purpose, freshwater hosing experiments are conducted with an atmosphere–ocean general circulation model under MIS5a and MIS3 boundary conditions, as well as MIS3 boundary conditions with MIS5a ice sheets. The impact of ice sheet differences on the duration of the stadials is evaluated by comparing recovery times of the AMOC after the freshwater forcing is stopped. These experiments show a slightly shorter recovery time of the AMOC during MIS3 compared with MIS5a, which is consistent with ice core data. We find that larger glacial ice sheets in MIS3 shorten the recovery time. Sensitivity experiments show that stronger surface winds over the North Atlantic shorten the recovery time by increasing the surface salinity and decreasing the sea ice amount in the deepwater formation region, which sets favorable conditions for oceanic convection. In contrast, we also find that surface cooling by larger ice sheets tends to increase the recovery time of the AMOC by increasing the sea ice thickness over the deepwater formation region. Thus, this study suggests that the larger ice sheet during MIS3 compared with MIS5a could have contributed to the shortening of stadials in MIS3, despite the climate being colder than that of MIS5a, because surface wind plays a larger role

    Effect of Climatic Precession on Dansgaard-Oeschger-Like Oscillations

    Get PDF
    Using the climate model MIROC4m, we simulate self-sustained oscillations of millennial-scale periodicity in the climate and Atlantic meridional overturning circulation under glacial conditions. We show two cases of extreme climatic precession and examine the mechanism of these oscillations. When the climatic precession corresponds to strong (weak) boreal seasonality, the period of the oscillation is about 1,500 (3,000) years. During the stadial, hot (cool) summer conditions in the Northern Hemisphere contribute to thin (thick) sea ice, which covers the deep convection sites, triggering early (late) abrupt climate change. During the interstadial, as sea ice is thin (thick), cold deep-water forms and cools the subsurface quickly (slowly), which influences the stratification of the North Atlantic Ocean. We show that the oscillations are explained by the internal feedbacks of the atmosphere-sea ice-ocean system, especially subsurface ocean temperature change and salt advection feedback with a positive feedback between the subpolar gyre and deep convection

    Mineral maturity and crystallinity index are distinct characteristics of bone mineral

    Get PDF
    The purpose of this study was to test the hypothesis that mineral maturity and crystallinity index are two different characteristics of bone mineral. To this end, Fourier transform infrared microspectroscopy (FTIRM) was used. To test our hypothesis, synthetic apatites and human bone samples were used for the validation of the two parameters using FTIRM. Iliac crest samples from seven human controls and two with skeletal fluorosis were analyzed at the bone structural unit (BSU) level by FTIRM on sections 2–4 lm thick. Mineral maturity and crystallinity index were highly correlated in synthetic apatites but poorly correlated in normal human bone. In skeletal fluorosis, crystallinity index was increased and maturity decreased, supporting the fact of separate measurement of these two parameters. Moreover, results obtained in fluorosis suggested that mineral characteristics can be modified independently of bone remodeling. In conclusion, mineral maturity and crystallinity index are two different parameters measured separately by FTIRM and offering new perspectives to assess bone mineral traits in osteoporosis

    Climate of High-obliquity Exoterrestrial Planets with a Three-dimensional Cloud System Resolving Climate Model

    Get PDF
    Planetary climates are strongly affected by planetary orbital parameters such as obliquity, eccentricity, and precession. In exoplanetary systems, exoterrestrial planets should have various obliquities. High-obliquity planets would have extreme seasonal cycles due to the seasonal change of the distribution of the insolation. Here, we introduce the Non-hydrostatic ICosahedral Atmospheric Model (NICAM), a global cloud-resolving model, to investigate the climate of high-obliquity planets. This model can explicitly simulate a three-dimensional cloud distribution and vertical transports of water vapor. We simulated exoterrestrial climates with high resolution using the supercomputer FUGAKU. We assumed aqua-planet configurations with 1 bar of air as a background atmosphere, with four different obliquities (0°, 23.5°, 45°, and 60°). We ran two sets of simulations: (1) low resolution (∼220 km mesh as the standard resolution of a general circulation model for exoplanetary science) with parameterization for cloud formation, and (2) high resolution (∼14 km mesh) with an explicit cloud microphysics scheme. Results suggest that high-resolution simulations with an explicit treatment of cloud microphysics reveal warmer climates due to less low cloud fraction and a large amount of water vapor in the atmosphere. It implies that treatments of cloud-related processes lead to a difference between different resolutions in climatic regimes in cases with high obliquities
    corecore