353 research outputs found

    Lexical evolution rates by automated stability measure

    Full text link
    Phylogenetic trees can be reconstructed from the matrix which contains the distances between all pairs of languages in a family. Recently, we proposed a new method which uses normalized Levenshtein distances among words with same meaning and averages on all the items of a given list. Decisions about the number of items in the input lists for language comparison have been debated since the beginning of glottochronology. The point is that words associated to some of the meanings have a rapid lexical evolution. Therefore, a large vocabulary comparison is only apparently more accurate then a smaller one since many of the words do not carry any useful information. In principle, one should find the optimal length of the input lists studying the stability of the different items. In this paper we tackle the problem with an automated methodology only based on our normalized Levenshtein distance. With this approach, the program of an automated reconstruction of languages relationships is completed

    Data Fusion Techniques for Processing Aerospace Remote Sensing Electro-Optical Data

    Get PDF
    This paper deals with data fusion between different resolution multispectral (MS) and panchromatic (Pan) images in order to obtain high spatial resolution MS images. A survey is provided about the state-of-the-art data fusion techniques and synthesized product's quality assessment criteria. Several fusion algorithms and quality indexes were implemented in a Toolbox with a graphical user interface developed in MATLAB environment, namely Fusion Tool Box (FTB), developed to obtain experimental results. The analysis performed through FTB on two different data sets was oriented to validate the theoretical analysis and to perform a quantitative comparison among fusion algorithms for several applications. Results allow a first level evaluation of advantages and drawbacks of the various techniques for specific applications

    2d frustrated Ising model with four phases

    Full text link
    In this paper we consider a 2d random Ising system on a square lattice with nearest neighbour interactions. The disorder is short range correlated and asymmetry between the vertical and the horizontal direction is admitted. More precisely, the vertical bonds are supposed to be non random while the horizontal bonds alternate: one row of all non random horizontal bonds is followed by one row where they are independent dichotomic random variables. We solve the model using an approximate approach that replace the quenched average with an annealed average under the constraint that the number of frustrated plaquettes is keep fixed and equals that of the true system. The surprising fact is that for some choices of the parameters of the model there are three second order phase transitions separating four different phases: antiferromagnetic, glassy-like, ferromagnetic and paramagnetic.Comment: 17 pages, Plain TeX, uses Harvmac.tex, 4 ps figures, submitted to Physical Review

    Evolution of the most recent common ancestor of a population with no selection

    Full text link
    We consider the evolution of a population of fixed size with no selection. The number of generations GG to reach the first common ancestor evolves in time. This evolution can be described by a simple Markov process which allows one to calculate several characteristics of the time dependence of GG. We also study how GG is correlated to the genetic diversity.Comment: 21 pages, 10 figures, uses RevTex4 and feynmf.sty Corrections : introduction and conclusion rewritten, references adde

    Statistical properties of genealogical trees

    Get PDF
    We analyse the statistical properties of genealogical trees in a neutral model of a closed population with sexual reproduction and non-overlapping generations. By reconstructing the genealogy of an individual from the population evolution, we measure the distribution of ancestors appearing more than once in a given tree. After a transient time, the probability of repetition follows, up to a rescaling, a stationary distribution which we calculate both numerically and analytically. This distribution exhibits a universal shape with a non-trivial power law which can be understood by an exact, though simple, renormalization calculation. Some real data on human genealogy illustrate the problem, which is relevant to the study of the real degree of diversity in closed interbreeding communities.Comment: Accepted for publication in Phys. Rev. Let

    Field-enlarging transformations and chiral theories

    Full text link
    A field-enlarging transformation in the chiral electrodynamics is performed. This introduces an additional gauge symmetry to the model that is unitary and anomaly-free and allows for comparison of different models discussed in the literature. The problem of superfluous degrees of freedom and their influence on quantization is discussed. Several "mysteries" are explained from this point of view.Comment: 14 pages, LaTeX-file, BI-TP 93/0

    Quantum-classical transition in Scale Relativity

    Get PDF
    The theory of scale relativity provides a new insight into the origin of fundamental laws in physics. Its application to microphysics allows us to recover quantum mechanics as mechanics on a non-differentiable (fractal) spacetime. The Schrodinger and Klein-Gordon equations are demonstrated as geodesic equations in this framework. A development of the intrinsic properties of this theory, using the mathematical tool of Hamilton's bi-quaternions, leads us to a derivation of the Dirac equation within the scale-relativity paradigm. The complex form of the wavefunction in the Schrodinger and Klein-Gordon equations follows from the non-differentiability of the geometry, since it involves a breaking of the invariance under the reflection symmetry on the (proper) time differential element (ds - ds). This mechanism is generalized for obtaining the bi-quaternionic nature of the Dirac spinor by adding a further symmetry breaking due to non-differentiability, namely the differential coordinate reflection symmetry (dx^mu - dx^mu) and by requiring invariance under parity and time inversion. The Pauli equation is recovered as a non-relativistic-motion approximation of the Dirac equation.Comment: 28 pages, no figur

    On the accuracy of language trees

    Get PDF
    Historical linguistics aims at inferring the most likely language phylogenetic tree starting from information concerning the evolutionary relatedness of languages. The available information are typically lists of homologous (lexical, phonological, syntactic) features or characters for many different languages. From this perspective the reconstruction of language trees is an example of inverse problems: starting from present, incomplete and often noisy, information, one aims at inferring the most likely past evolutionary history. A fundamental issue in inverse problems is the evaluation of the inference made. A standard way of dealing with this question is to generate data with artificial models in order to have full access to the evolutionary process one is going to infer. This procedure presents an intrinsic limitation: when dealing with real data sets, one typically does not know which model of evolution is the most suitable for them. A possible way out is to compare algorithmic inference with expert classifications. This is the point of view we take here by conducting a thorough survey of the accuracy of reconstruction methods as compared with the Ethnologue expert classifications. We focus in particular on state-of-the-art distance-based methods for phylogeny reconstruction using worldwide linguistic databases. In order to assess the accuracy of the inferred trees we introduce and characterize two generalizations of standard definitions of distances between trees. Based on these scores we quantify the relative performances of the distance-based algorithms considered. Further we quantify how the completeness and the coverage of the available databases affect the accuracy of the reconstruction. Finally we draw some conclusions about where the accuracy of the reconstructions in historical linguistics stands and about the leading directions to improve it.Comment: 36 pages, 14 figure

    Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite <i>Leishmania</i>.

    Get PDF
    Knowledge of viral diversity is expanding greatly, but many lineages remain underexplored. We surveyed RNA viruses in 52 cultured monoxenous relatives of the human parasite &lt;i&gt;Leishmania&lt;/i&gt; ( &lt;i&gt;Crithidia&lt;/i&gt; and &lt;i&gt;Leptomonas&lt;/i&gt; ), as well as plant-infecting &lt;i&gt;Phytomonas&lt;/i&gt; &lt;i&gt;Leptomonas pyrrhocoris&lt;/i&gt; was a hotbed for viral discovery, carrying a virus (Leptomonas pyrrhocoris ostravirus 1) with a highly divergent RNA-dependent RNA polymerase missed by conventional BLAST searches, an emergent clade of tombus-like viruses, and an example of viral endogenization. A deep-branching clade of trypanosomatid narnaviruses was found, notable as &lt;i&gt;Leptomonas seymouri&lt;/i&gt; bearing Narna-like virus 1 (LepseyNLV1) have been reported in cultures recovered from patients with visceral leishmaniasis. A deep-branching trypanosomatid viral lineage showing strong affinities to bunyaviruses was termed " &lt;i&gt;Leishbunyavirus&lt;/i&gt; " (LBV) and judged sufficiently distinct to warrant assignment within a proposed family termed " &lt;i&gt;Leishbunyaviridae&lt;/i&gt; " Numerous relatives of trypanosomatid viruses were found in insect metatranscriptomic surveys, which likely arise from trypanosomatid microbiota. Despite extensive sampling we found no relatives of the totivirus &lt;i&gt;Leishmaniavirus&lt;/i&gt; (LRV1/2), implying that it was acquired at about the same time the &lt;i&gt;Leishmania&lt;/i&gt; became able to parasitize vertebrates. As viruses were found in over a quarter of isolates tested, many more are likely to be found in the &gt;600 unsurveyed trypanosomatid species. Viral loss was occasionally observed in culture, providing potentially isogenic virus-free lines enabling studies probing the biological role of trypanosomatid viruses. These data shed important insights on the emergence of viruses within an important trypanosomatid clade relevant to human disease
    corecore