2,809 research outputs found

    Massive liquid Ar and Xe detectors for direct Dark Matter searches

    Full text link
    A novel experiment for direct searches of the Dark Matter with liquid argon double-phase chamber with a mass of liquid Ar up to several hundred tons is proposed. To suppress the b-, g- and n0- backgrounds, the comparison of scintillation and ionization signals for every event is suggested. The addition in liquid Ar of photosensitive Ge(CH3)4 or C2H4 and suppression of triplet component of scintillation signals ensures the detection of scintillation signals with high efficiency and provides a complete suppression of the electron background. For the detection of photoelectrons and ionization electrons, highly stable and reliable GEM detectors must be used.Comment: 8 pages, 2 figures, 1 tabl

    Strong vortex-antivortex fluctuations in the type II superconducting film

    Full text link
    The small size vortex-antivortex pairs proliferation in type II superconducting film is considered for the wide interval of temperatures below Tc. The corresponding contribution to free energy is calculated. It is shown that these fluctuations give the main contribution to the heat capacity of the film both at low temperatures and in the vicinity of transition

    Static magneto-polarizability of cylindrical nanostructures

    Full text link
    The static polarizability of cylindrical systems is shown to have a strong dependence on a uniform magnetic field applied parallel to the tube axis. This dependence is demonstrated by performing exact numerical diagonalizations of simple cylinders (rolled square lattices), armchair and zig-zag carbon nanotubes (rolled honeycomb lattices) for different electron-fillings. At low temperature, the polarizability as function of the magnetic field has a discontinuous character where plateau-like region are separated by sudden jumps or peaks. A one to one correspondence is pointed out between each discontinuity of the polarizability and the magnetic-field induced cross-over between the ground state and the first excited state. Our results suggest the possibility to use measurements of the static polarizability under magnetic field to get important informations about excited states of cylindrical systems such as carbon nanotubes.Comment: 9 eps fig

    Mediatic graphs

    Full text link
    Any medium can be represented as an isometric subgraph of the hypercube, with each token of the medium represented by a particular equivalence class of arcs of the subgraph. Such a representation, although useful, is not especially revealing of the structure of a particular medium. We propose an axiomatic definition of the concept of a `mediatic graph'. We prove that the graph of any medium is a mediatic graph. We also show that, for any non-necessarily finite set S, there exists a bijection from the collection M of all the media on a given set S (of states) onto the collection G of all the mediatic graphs on S.Comment: Four axioms replaced by two; two references added; Fig.6 correcte

    Spin crossover: the quantum phase transition induced by high pressure

    Full text link
    The relationship is established between the Berry phase and spin crossover in condensed matter physics induced by high pressure. It is shown that the geometric phase has topological origin and can be considered as the order parameter for such transition.Comment: 4 pages, 3 figure

    Coupling angle resolved photoemission data and quasiparticle structure in antiferromagnetic insulators Sr2CuO2Cl2 and Ca2CuO2Cl2

    Full text link
    We have analyzed the quasiparticle dispersion and ARPES-spectral density for Sr2CuO2Cl2 and Ca2CuO2Cl2 antiferromagnetic insulators along basic symmetric directions of the Brillouin zone (BZ) in a framework of an extended tight binding method (ETBM) with explicit account for intracell strong electron correlations. The quasiparticle dispersion is in a good agreement with ARPES- data. At the top of valence band we found a narrow impurity-like virtual level with the spectral weight proportional to the concentration of spin fluctuations. A pseudogap between the virtual level and the top of the valence band has dispersion similar to 'remnant Fermi surface' in Ca2CuO2Cl2 and to a pseudogap in the underdoped Bi2212 samples. A calculated parity of the polarized ARPES-spectra in (0,0),(pi/2,pi/2),(pi,0) - points in the AFM- phase is even with regard to relative magnitudes of the partial contributions by different orbitals to the total ARPES- spectral density. Conditions of an observability for the different partial contributions in the polarized ARPES- experiments are determined also.Comment: 15 pdf-pages with 10 figures and tabl

    A new class of nodal stationary states in 2D Heisenberg ferromagnet

    Full text link
    A new class of nodal topological excitations in a two-dimensional Heisenberg model is studied. The solutions correspond to a nodal singular point of the gradient field of the azimuthal angle. An analytical solution found for the isotropic case. An effect of in-plane exchange anisotropy is studied numerically. It results in solutions which are analogues of the conventional out-of-plane solitons in the two-dimensional magnets.Comment: 5 figure
    corecore