1,097 research outputs found

    Electronic Correlations in CoO2, the Parent Compound of Triangular Cobaltates

    Full text link
    A 59Co NMR study of CoO2, the x=0 end member of AxCoO2 (A = Na, Li...) cobaltates, reveals a metallic ground state, though with clear signs of strong electron correlations: low-energy spin fluctuations develop at wave vectors q different from 0 and a crossover to a Fermi-liquid regime occurs below a characteristic temperature T*~7 K. Despite some uncertainty over the exact cobalt oxidation state n this material, the results show that electronic correlations are revealed as x is reduced below 0.3. The data are consistent with NaxCoO2 being close to the Mott transition in the x -> 0 limit.Comment: 4 pages, submitte

    The antiferromagnetic insulator Ca3FeRhO6: characterization and electronic structure calculations

    Full text link
    We investigate the antiferromagnetic insulating nature of Ca3FeRhO6 both experimentally and theoretically. Susceptibility measurements reveal a Neel temperature T_N = 20 K, and a magnetic moment of 5.3 muB/f. u., while Moessbauer spectroscopy strongly suggests that the Fe ions, located in trigonal prismatic sites, are in a 3+ high spin state. Transport measurements display a simple Arrhenius law, with an activation energy of 0.2 eV. The experimental results are interpreted with LSDA band structure calculations, which confirm the Fe 3+ state, the high-spin/low-spin scenario, the antiferromagnetic ordering, and the value for the activation energy.Comment: 5 pages, 6 figure

    Ferromagnetic to spin glass cross over in (La,Tb)_{2/3}Ca_{1/3}MnO_{3}

    Full text link
    In the series La_{2/3-x}Tb_{x}Ca_{1/3}MnO_{3}, it is known that the compositions are ferromagnetic for smaller values of x and show spin glass characteristics at larger values of x. Our studies on the magnetic properties of various compositions in the La_{2/3-x}Tb_{x}Ca_{1/3}MnO_{3} series show that the cross over from ferromagnetic to spin glass region takes place above x ~ 1/8. Also, a low temperature anomaly at 30 K, observed in the ac susceptibility curves, disappears for compositions above this critical value of x. A mixed phase region coexists in the narrow compositional range 0.1 <= x <= 0.125, indicating that the ferromagnetic to spin glass cross over is not abrupt.Comment: 5 pages, 5 figure

    Rhodium Doped Manganites : Ferromagnetism and Metallicity

    Get PDF
    The possibility to induce ferromagnetism and insulator to metal transitions in small A site cation manganites Ln_{1-x}Ca_xMnO_3 by rhodium doping is shown for the first time. Colossal magnetoresistance (CMR) properties are evidenced for a large compositional range (0.35 \leq x < 0.60). The ability of rhodium to induce such properties is compared to the results obtained by chromium and ruthenium doping. Models are proposed to explain this behavior.Comment: 11 pages, 8 figure

    Competition between ferromagnetism and spin glass: the key for large magnetoresistance in oxygen deficient perovskites SrCo1-xMxO3-d (M = Nb, Ru)

    Full text link
    The magnetic and magnetotransport properties of the oxygen deficient perovskites, SrCo1-xMxO3-d with M = Nb and Ru, were investigated. Both Nb- and Ru-substituted cobaltites are weak ferromagnets, with transition temperatures Tm of 130-150 K and 130-180 K, respectively, and both exhibit a spin glass behavior at temperatures below Tf = 80-90 K. It is demonstrated that there exists a strong competition between ferromagnetism and spin glass state, where Co4+ induces ferromagnetism, whereas Nb or Ru substitution at the cobalt sites induces magnetic disorder, and this particular magnetic behavior is the origin of large negative magnetoresistance of these oxides, reaching up to 30% at 5 K in 7 T. The differences between Nb- and Ru-substituted cobaltites are discussed on the basis of the different electronic configuration of niobium and ruthenium cations.Comment: 32 pages, 9 figures, to appear in Phys. Rev.

    Field-Induced Magnetization Steps in Intermetallic Compounds and Manganese Oxides: The Martensitic Scenario

    Full text link
    Field-induced magnetization jumps with similar characteristics are observed at low temperature for the intermetallic germanide Gd5Ge4and the mixed-valent manganite Pr0.6Ca0.4Mn0.96Ga0.04O3. We report that the field location -and even the existence- of these jumps depends critically on the magnetic field sweep rate used to record the data. It is proposed that, for both compounds, the martensitic character of their antiferromagnetic-to-ferromagnetic transitions is at the origin of the magnetization steps.Comment: 4 pages,4 figure

    Magneto-elastic coupling and unconventional magnetic ordering in triangular multiferroic AgCrS2

    Full text link
    The temperature evolution of the crystal and magnetic structures of ferroelectric sulfide AgCrS2 have been investigated by means of neutron scattering. AgCrS2 undergoes at TN = 41.6 K a first-order phase transition, from a paramagnetic rhombohedral R3m to an antiferromagnetic monoclinic structure with a polar Cm space group. In addition to being ferroelectric below TN, the low temperature phase of AgCrS2 exhibits an unconventional collinear magnetic structure that can be described as double ferromagnetic stripes coupled antiferromagnetically, with the magnetic moment of Cr+3 oriented along b within the anisotropic triangular plane. The magnetic couplings stabilizing this structure are discussed using inelastic neutron scattering results. Ferroelectricity below TN in AgCrS2 can possibly be explained in terms of atomic displacements at the magneto-elastic induced structural distortion. These results contrast with the behavior of the parent frustrated antiferromagnet and spin-driven ferroelectric AgCrO2

    Stability of geometrically frustrated magnetic state of Ca3CoRhO6 to applications of positive and negative pressure

    Full text link
    The influence of negative chemical pressure induced by gradual replacement of Ca by Sr as well as of external pressure (up to 10 kbar) on the magnetism of Ca3CoRhO6 has been investigated by magnetization studies. It is found that the solid solution, Ca(3-x)Sr(x)CoRhO6, exists at least till about x= 1.0 without any change in the crystal structure. Apart from insensitivity of the spin-chain feature to volume expansion, the characteristic features of geometrical frustration interestingly appear at the same temperatures for all compositions, in sharp contrast to the response to Y substitution for Ca (reported previously). Interestingly, huge frequency dependence of ac susceptibility known for the parent compound persists for all compositions. We do not find a change in the properties under external pressure. The stability of the magnetic anomalies of this compound to the volume change (about 4%) is puzzling

    Magnetic behavior of spin-chain compounds, Sr3ZnRhO6 and Ca3NiMnO6, from heat capacity and ac susceptibility studies

    Full text link
    Heat-capacity (C) and ac susceptibility measurements have been performed on the spin-chain compounds, Sr3ZnRhO6 and Ca3NiMnO6, to establish their magnetic behavior and to explore whether there are magnetic frustration effects due to antiferromagnetic coupling of the chains arranged in a triangular fashion. While the paramagnetic Curie temperatures have been known to be large with a negative sign, as though antiferromagnetic interaction is very strong, the results establish that (i) the former apparently undergoes inhomogeneous magnetic ordering only around 15 K, however without spin-glass anomalies, and (ii) the latter orders antiferromagnetically at a relatively low temperature (17 K). Thus, the magnetic frustration manifests differently in these compounds.Comment: J. Solid State Chemistry, in pres
    • …
    corecore