136 research outputs found

    Characterization of the human properdin gene

    Full text link

    Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1α, CAIX, LDH-5, GLUT-1, MCT1 and MCT4

    Get PDF
    Contains fulltext : 96097.pdf (postprint version ) (Open Access)BACKGROUND: The cellular response of malignant tumors to hypoxia is diverse. Several important endogenous metabolic markers are upregulated under hypoxic conditions. We examined the staining patterns and co-expression of HIF-1alpha, CAIX, LDH-5, GLUT-1, MCT1 and MCT4 with the exogenous hypoxic cell marker pimonidazole and the association of marker expression with clinicopathological characteristics. METHODS: 20 biopsies of advanced head and neck carcinomas were immunohistochemically stained and analyzed. All patients were given the hypoxia marker pimonidazole intravenously 2 h prior to biopsy taking. The tumor area positive for each marker, the colocalization of the different markers and the distribution of the markers in relation to the blood vessels were assessed by semiautomatic quantitative analysis. RESULTS: MCT1 staining was present in hypoxic (pimonidazole stained) as well as non-hypoxic areas in almost equal amounts. MCT1 expression showed a significant overall correlation (r = 0.75, p < 0.001) and strong spatial relationship with CAIX. LDH-5 showed the strongest correlation with pimonidazole (r = 0.66, p = 0.002). MCT4 and GLUT-1 demonstrated a typical diffusion-limited hypoxic pattern and showed a high degree of colocalization. Both MCT4 and CAIX showed a higher expression in the primary tumor in node positive patients (p = 0.09 both). CONCLUSIONS: Colocalization and staining patterns of metabolic and hypoxia-related proteins provides valuable additional information over single protein analyses and can improve the understanding of their functions and environmental influences

    Differential Impact of EGFR-Targeted Therapies on Hypoxia Responses: Implications for Treatment Sensitivity in Triple-Negative Metastatic Breast Cancer

    Get PDF
    In solid tumors, such as breast cancer, cells are exposed to hypoxia. Cancer cells adapt their metabolism by activating hypoxia-inducible factors (HIFs) that promote the transcription of genes involved in processes such as cell survival, drug resistance and metastasis. HIF-1 is also induced in an oxygen-independent manner through the activation of epidermal growth factor receptor tyrosine kinase (EGFR-TK). Triple-negative breast cancer (TNBC) is a subtype of invasive breast cancer characterized by negative expression of hormonal and HER2 receptors, and this subtype generally overexpresses EGFR. Sensitivity to three EGFR inhibitors (cetuximab, gefitinib and lapatinib, an HER2/EGFR-TK inhibitor) was evaluated in a metastatic TNBC cell model (MDA-MB-231), and the impact of these drugs on the activity and stability of HIF was assessed.MDA-MB-231 cells were genetically modified to stably express an enhanced green fluorescent protein (EGFP) induced by hypoxia; the Ca9-GFP cell model reports HIF activity, whereas GFP-P564 reports HIF stability. The reporter signal was monitored by flow cytometry. HIF-1 DNA-binding activity, cell migration and viability were also evaluated in response to EGFR inhibitors. Cell fluorescence signals strongly increased under hypoxic conditions (> 30-fold). Cetuximab and lapatinib did not affect the signal induced by hypoxia, whereas gefitinib sharply reduced its intensity in both cell models and also diminished HIF-1 alpha levels and HIF-1 DNA-binding activity in MDA-MB-231 cells. This gefitinib feature was associated with its ability to inhibit MDA-MB-231 cell migration and to induce cell mortality in a dose-dependent manner. Cetuximab and lapatinib had no effect on cell migration or cell viability.Resistance to cetuximab and lapatinib and sensitivity to gefitinib were associated with their ability to modulate HIF activity and stability. In conclusion, downregulation of HIF-1 through EGFR signaling seems to be required for the induction of a positive response to EGFR-targeted therapies in TNBC

    The bZIP Transcription Factor Rca1p Is a Central Regulator of a Novel CO2 Sensing Pathway in Yeast

    Get PDF
    Like many organisms the fungal pathogen Candida albicans senses changes in the environmental CO2 concentration. This response involves two major proteins: adenylyl cyclase and carbonic anhydrase (CA). Here, we demonstrate that CA expression is tightly controlled by the availability of CO2 and identify the bZIP transcription factor Rca1p as the first CO2 regulator of CA expression in yeast. We show that Rca1p upregulates CA expression during contact with mammalian phagocytes and demonstrate that serine 124 is critical for Rca1p signaling, which occurs independently of adenylyl cyclase. ChIP-chip analysis and the identification of Rca1p orthologs in the model yeast Saccharomyces cerevisiae (Cst6p) point to the broad significance of this novel pathway in fungi. By using advanced microscopy we visualize for the first time the impact of CO2 build-up on gene expression in entire fungal populations with an exceptional level of detail. Our results present the bZIP protein Rca1p as the first fungal regulator of carbonic anhydrase, and reveal the existence of an adenylyl cyclase independent CO2 sensing pathway in yeast. Rca1p appears to regulate cellular metabolism in response to CO2 availability in environments as diverse as the phagosome, yeast communities or liquid culture

    Alternative splicing variant of the hypoxia marker carbonic anhydrase IX expressed independently of hypoxia and tumour phenotype

    Get PDF
    CA IX is a hypoxia-induced, cancer-associated carbonic anhydrase isoform with functional involvement in pH control and cell adhesion. Here we describe an alternative splicing variant of the CA9 mRNA, which does not contain exons 8–9 and is expressed in tumour cells independently of hypoxia. It is also detectable in normal tissues in the absence of the full-length transcript and can therefore produce false-positive data in prognostic studies based on the detection of the hypoxia- and cancer-related CA9 expression. The splicing variant encodes a truncated CA IX protein lacking the C-terminal part of the catalytic domain. It shows diminished catalytic activity and is intracellular or secreted. When overexpressed, it reduces the capacity of the full-length CA IX protein to acidify extracellular pH of hypoxic cells and to bind carbonic anhydrase inhibitor. HeLa cells transfected with the splicing variant cDNA generate spheroids that do not form compact cores, suggesting that they fail to adapt to hypoxic stress. Our data indicate that the splicing variant can functionally interfere with the full-length CA IX. This might be relevant particularly under conditions of mild hypoxia, when the cells do not suffer from severe acidosis and do not need excessive pH control

    HIF-1 Regulates Iron Homeostasis in Caenorhabditis elegans by Activation and Inhibition of Genes Involved in Iron Uptake and Storage

    Get PDF
    Caenorhabditis elegans ftn-1 and ftn-2, which encode the iron-storage protein ferritin, are transcriptionally inhibited during iron deficiency in intestine. Intestinal specific transcription is dependent on binding of ELT-2 to GATA binding sites in an iron-dependent enhancer (IDE) located in ftn-1 and ftn-2 promoters, but the mechanism for iron regulation is unknown. Here, we identify HIF-1 (hypoxia-inducible factor -1) as a negative regulator of ferritin transcription. HIF-1 binds to hypoxia-response elements (HREs) in the IDE in vitro and in vivo. Depletion of hif-1 by RNA interference blocks transcriptional inhibition of ftn-1 and ftn-2 reporters, and ftn-1 and ftn-2 mRNAs are not regulated in a hif-1 null strain during iron deficiency. An IDE is also present in smf-3 encoding a protein homologous to mammalian divalent metal transporter-1. Unlike the ftn-1 IDE, the smf-3 IDE is required for HIF-1–dependent transcriptional activation of smf-3 during iron deficiency. We show that hif-1 null worms grown under iron limiting conditions are developmentally delayed and that depletion of FTN-1 and FTN-2 rescues this phenotype. These data show that HIF-1 regulates intestinal iron homeostasis during iron deficiency by activating and inhibiting genes involved in iron uptake and storage

    Presence of HIF-1 and related genes in normal mucosa, adenomas and carcinomas of the colorectum

    Get PDF
    Expression of the transcription factor hypoxia-inducible factor 1 (HIF-1), which plays a key role in cellular adaptation to hypoxia, was investigated in normal colorectal mucosa (ten), adenomas (61), and carcinomas (23). Tissue samples were analyzed for HIF-1α, its upstream regulators, von Hippel–Lindau factor, AKT, and mammalian target of rapamycin (mTOR) and its downstream targets glucose transporter 1 (GLUT1), carbonic anhydrase IX, stromal-cell-derived factor 1 (SDF-1) by immunohistochemistry. In normal colorectal mucosa, HIF-1α was observed in almost all nuclei of surface epithelial cells, probably secondary to a gradient of oxygenation, as indicated by pimonidazole staining. The same staining pattern was present in 87% of adenomas. In carcinomas, HIF-1α was present predominantly around areas of necrosis (78%). Active AKT and mTOR, were present in all adenomas, carcinomas, and in normal colorectal mucosa. GLUT1 and SDF-1 were present in the normal surface epithelium of all adenoma cases, whereas in the carcinoma GLUT1 was located around necrotic regions and SDF-1 was present in all epithelial cells. In conclusion, HIF-1α appears to be physiologically expressed in the upper part of the colorectal mucosa. The present observations support that upregulation of HIF-1α and its downstream targets GLUT1 and SDF-1 in colorectal adenomas and carcinomas may be due to hypoxia, in close interaction with an active phosphatidylinositol 3-kinases–AKT–mTOR pathway
    corecore