1,183 research outputs found
Optical probes of the quantum vacuum: The photon polarization tensor in external fields
The photon polarization tensor is the central building block of an effective
theory description of photon propagation in the quantum vacuum. It accounts for
the vacuum fluctuations of the underlying theory, and in the presence of
external electromagnetic fields, gives rise to such striking phenomena as
vacuum birefringence and dichroism. Standard approximations of the polarization
tensor are often restricted to on-the-light-cone dynamics in homogeneous
electromagnetic fields, and are limited to certain momentum regimes only. We
devise two different strategies to go beyond these limitations: First, we aim
at obtaining novel analytical insights into the photon polarization tensor for
homogeneous fields, while retaining its full momentum dependence. Second, we
employ wordline numerical methods to surpass the constant-field limit.Comment: 13 pages, 4 figures; typo in Eq. (5) corrected (matches journal
version
Exact flow equation for composite operators
We propose an exact flow equation for composite operators and their
correlation functions. This can be used for a scale-dependent partial
bosonization or "flowing bosonization" of fermionic interactions, or for an
effective change of degrees of freedom in dependence on the momentum scale. The
flow keeps track of the scale dependent relation between effective composite
fields and corresponding composite operators in terms of the fundamental
fields.Comment: 7 pages, 1 figure, minor changes, published versio
Tomographic separation of composite spectra. The components of Plaskett's Star
The UV photospheric lines of Plaskett's Star (HD 47129), a 14.4 day period, double lined O-type spectroscopic binary were analyzed. Archival data from IUE (17 spectra well distributed in orbital phase) were analyzed with several techniques. A cross correlation analysis, which showed that the secondary produces significant lines in the UV, indicates that the mass ratio is q = 1.18 + or - 0.12 (secondary slightly more massive). A tomography algorithm was used to produce the separate spectra of the two stars in six spectral regions. The interpolated spectral classifications of the primary and secondary, 07.3 I and 06.2 I, respectively, were estimated through a comparison of UV line ratios with those in spectral standard stars. The intensity ratio of the stars in the UV is 0.53 + or - 0.05 (primary brighter). The secondary lines appear rotationally broadened, and the projected rotational velocity V sin i for this star is estimated to be 310 + or - 20 km/s. The possible evolutionary history of this system is discussed through a comparison of the positions of the components and evolutionary tracks in the H-R diagram
Pair Production Beyond the Schwinger Formula in Time-Dependent Electric Fields
We investigate electron-positron pair production in pulse-shaped electric
background fields using a non-Markovian quantum kinetic equation. We identify a
pulse-length range for subcritical fields still in the nonperturbative regime
where the number of produced pairs significantly exceeds that of a naive
expectation based on the Schwinger formula. From a conceptual viewpoint, we
find a remarkable quantitative agreement between the (real-time) quantum
kinetic approach and the (imaginary-time) effective action approach.Comment: 5 pages, 3 figures. Typos corrected and references added, PRD Versio
Clues about the scarcity of stripped-envelope stars from the evolutionary state of the sdO+Be binary system phi Persei
Stripped-envelope stars (SESs) form in binary systems after losing mass
through Roche-lobe overflow. They bear astrophysical significance as sources of
UV and ionizing radiation in older stellar populations and, if sufficiently
massive, as stripped supernova progenitors. Binary evolutionary models predict
them to be common, but only a handful of subdwarfs (i.e., SESs) with B-type
companions are known. This could be the result of observational biases
hindering detection, or an incorrect understanding of binary evolution. We
reanalyze the well-studied post-interaction binary phi Persei. Recently, new
data improved the orbital solution of the system, which contains a ~1.2 Msun
SES and a rapidly rotating ~9.6 Msun Be star. We compare with an extensive grid
of evolutionary models using a Bayesian approach and find initial masses of the
progenitor of 7.2+/-0.4 Msun for the SES and 3.8+/-0.4 Msun for the Be star.
The system must have evolved through near-conservative mass transfer. These
findings are consistent with earlier studies. The age we obtain, 57+/-9 Myr, is
in excellent agreement with the age of the alpha Persei cluster. We note that
neither star was initially massive enough to produce a core-collapse supernova,
but mass exchange pushed the Be star above the mass threshold. We find that the
subdwarf is overluminous for its mass by almost an order of magnitude, compared
to the expectations for a helium core burning star. We can only reconcile this
if the subdwarf is in a late phase of helium shell burning, which lasts only
2-3% of the total lifetime as a subdwarf. This could imply that up to ~50 less
evolved, dimmer subdwarfs exist for each system similar to phi Persei. Our
findings can be interpreted as a strong indication that a substantial
population of SESs indeed exists, but has so far evaded detection because of
observational biases and lack of large-scale systematic searches.Comment: 11 pages, 5 figures, accepted for publication in A&
Ultraviolet observations of the X-ray photoionized wind of Cygnus X-1 during X-ray soft/high state
(Shortened) Ultraviolet observations of the black hole X-ray binary Cygnus
X-1 were obtained using the STIS on HSTubble. We detect P Cygni line features
show strong, broad absorption components when the X-ray source is behind the
companion star and noticeably weaker absorption when the X-ray source is
between us and the companion star. We fit the P Cygni profiles using the SEI
method applied to a spherically symmetric stellar wind subject to X-ray
photoionization from the black hole. The Si IV doublet provides the most
reliable estimates of the parameters of the wind and X-ray illumination. The
velocity increases with radius according to
, with and
km s.The microturbulent velocity was
km s. Our fit implies a ratio of X-ray luminosity to wind mass-loss rate
of L, measured at = 4.8. Our
models determine parameters that may be used to estimate the accretion rate
onto the black hole and independently predict the X-ray luminosity. Our
predicted L matches that determined by contemporaneous RXTE ASM remarkably
well, but is a factor of 3 lower than the rate according to
Bondi-Hoyle-Littleton spherical wind accretion. We suggest that some of the
energy of accretion may go into powering a jet.Comment: 34 pages, 21 figures, 4 tables, accepted for publication in Ap
H-alpha Emission Variability in the gamma-ray Binary LS I +61 303
LS I +61 303 is an exceptionally rare example of a high mass X-ray binary
(HMXB) that also exhibits MeV-TeV emission, making it one of only a handful of
"gamma-ray binaries". Here we present H-alpha spectra that show strong
variability during the 26.5 day orbital period and over decadal time scales. We
detect evidence of a spiral density wave in the Be circumstellar disk over part
of the orbit. The H-alpha line profile also exhibits a dramatic emission burst
shortly before apastron, observed as a redshifted shoulder in the line profile,
as the compact source moves almost directly away from the observer. We
investigate several possible origins for this red shoulder, including an
accretion disk, mass transfer stream, and a compact pulsar wind nebula that
forms via a shock between the Be star's wind and the relativistic pulsar wind.Comment: Accepted to Ap
Exact flow equation for bound states
We develop a formalism to describe the formation of bound states in quantum
field theory using an exact renormalization group flow equation. As a concrete
example we investigate a nonrelativistic field theory with instantaneous
interaction where the flow equations can be solved exactly. However, the
formalism is more general and can be applied to relativistic field theories, as
well. We also discuss expansion schemes that can be used to find approximate
solutions of the flow equations including the essential momentum dependence.Comment: 22 pages, references added, published versio
Flow Equation for Supersymmetric Quantum Mechanics
We study supersymmetric quantum mechanics with the functional RG formulated
in terms of an exact and manifestly off-shell supersymmetric flow equation for
the effective action. We solve the flow equation nonperturbatively in a
systematic super-covariant derivative expansion and concentrate on systems with
unbroken supersymmetry. Already at next-to-leading order, the energy of the
first excited state for convex potentials is accurately determined within a 1%
error for a wide range of couplings including deeply nonperturbative regimes.Comment: 24 pages, 8 figures, references added, typos correcte
- …