842 research outputs found

    Investigations of excitation energy transfer and intramolecular interactions in a nitrogen corded distrylbenzene dendrimer system.

    Get PDF
    The photophysics of an amino-styrylbenzene dendrimer (A-DSB) system is probed by time-resolved and steady state luminescence spectroscopy. For two different generations of this dendrimer, steady state absorption, emission, and photoluminescence excitation spectra are reported and show that the efficiency of energy transfer from the dendrons to the core is very close to 100%. Ultrafast time-resolved fluorescence measurements at a range of excitation and detection wavelengths suggest rapid (and hence efficient) energy transfer from the dendron to the core. Ultrafast fluorescence anisotropy decay for different dendrimer generations is described in order to probe the energy migration processes. A femtosecond time-scale fluorescence depolarization was observed with the zero and second generation dendrimers. Energy transfer process from the dendrons to the core can be described by a Förster mechanism (hopping dynamics) while the interbranch interaction in A-DSB core was found to be very strong indicating the crossover to exciton dynamics

    Intoxicated eyewitnesses:the effect of a fully balanced placebo design on event memory and metacognitive control

    Get PDF
    Few studies have examined the impact of alcohol on metacognition for witnessed events. We used a 2x2 balanced placebo design, where mock-witnesses expected and drank alcohol, did not expect but drank alcohol, did not expect nor drank alcohol, or expected but did not drink alcohol. Participants watched a mock-crime in a bar-lab, followed by free recall and a cued-recall test with or without the option to reply ‘don’t know’ (DK). Intoxicated mock-witnesses’ free recall was less complete but not less accurate. During cued-recall, alcohol led to lower accuracy, and reverse placebo participants gave more erroneous and fewer correct responses. Permitting and clarifying DK responses was associated with fewer errors and more correct responses for sober individuals; and intoxicated witnesses were less likely to opt out of erroneous responding to unanswerable questions. Our findings highlight the practical and theoretical importance of examining pharmacological effects of alcohol and expectancies in real-life settings

    Exploring the physical controls of regional patterns of flow duration curves – Part 2: Role of seasonality, the regime curve, and associated process controls

    Get PDF
    The goal of this paper is to explore the process controls underpinning regional patterns of variations of streamflow regime behavior, i.e., the mean seasonal variation of streamflow within the year, across the continental United States. The ultimate motivation is to use the resulting process understanding to generate insights into the physical controls of another signature of streamflow variability, namely the flow duration curve (FDC). The construction of the FDC removes the time dependence of flows. Thus in order to better understand the physical controls in regions that exhibit strong seasonal dependence, the regime curve (RC), which is closely connected to the FDC, is studied in this paper and later linked back to the FDC. To achieve these aims a top-down modeling approach is adopted; we start with a simple two-stage bucket model, which is systematically enhanced through addition of new processes on the basis of model performance assessment in relation to observations, using rainfall-runoff data from 197 United States catchments belonging to the MOPEX dataset. Exploration of dominant processes and the determination of required model complexity are carried out through model-based sensitivity analyses, guided by a performance metric. Results indicated systematic regional trends in dominant processes: snowmelt was a key process control in cold mountainous catchments in the north and north-west, whereas snowmelt and vegetation cover dynamics were key controls in the north-east; seasonal vegetation cover dynamics (phenology and interception) were important along the Appalachian mountain range in the east. A simple two-bucket model (with no other additions) was found to be adequate in warm humid catchments along the west coast and in the south-east, with both regions exhibiting strong seasonality, whereas much more complex models are needed in the dry south and south-west. Agricultural catchments in the mid-west were found to be difficult to predict with the use of simple lumped models, due to the strong influence of human activities. Overall, these process controls arose from general east-west (seasonality) and north-south (aridity, temperature) trends in climate (with some exceptions), compounded by complex dynamics of vegetation cover and to a less extent by landscape factors (soils, geology and topography)

    Particle Systems with Stochastic Passing

    Full text link
    We study a system of particles moving on a line in the same direction. Passing is allowed and when a fast particle overtakes a slow particle, it acquires a new velocity drawn from a distribution P_0(v), while the slow particle remains unaffected. We show that the system reaches a steady state if P_0(v) vanishes at its lower cutoff; otherwise, the system evolves indefinitely.Comment: 5 pages, 5 figure

    Forces on Bins - The Effect of Random Friction

    Full text link
    In this note we re-examine the classic Janssen theory for stresses in bins, including a randomness in the friction coefficient. The Janssen analysis relies on assumptions not met in practice; for this reason, we numerically solve the PDEs expressing balance of momentum in a bin, again including randomness in friction.Comment: 11 pages, LaTeX, with 9 figures encoded, gzippe

    Exploring the physical controls of regional patterns of flow duration curves – Part 1: Insights from statistical analyses

    Get PDF
    The flow duration curve (FDC) is a classical method used to graphically represent the relationship between the frequency and magnitude of streamflow. In this sense it represents a compact signature of temporal runoff variability that can also be used to diagnose catchment rainfall-runoff responses, including similarity and differences between catchments. This paper is aimed at extracting regional patterns of the FDCs from observed daily flow data and elucidating the physical controls underlying these patterns, as a way to aid towards their regionalization and predictions in ungauged basins. The FDCs of total runoff (TFDC) using multi-decadal streamflow records for 197 catchments across the continental United States are separated into the FDCs of two runoff components, i.e., fast flow (FFDC) and slow flow (SFDC). In order to compactly display these regional patterns, the 3-parameter mixed gamma distribution is employed to characterize the shapes of the normalized FDCs (i.e., TFDC, FFDC and SFDC) over the entire data record. This is repeated to also characterize the between-year variability of "annual" FDCs for 8 representative catchments chosen across a climate gradient. Results show that the mixed gamma distribution can adequately capture the shapes of the FDCs and their variation between catchments and also between years. Comparison between the between-catchment and between-year variability of the FDCs revealed significant space-time symmetry. Possible relationships between the parameters of the fitted mixed gamma distribution and catchment climatic and physiographic characteristics are explored in order to decipher and point to the underlying physical controls. The baseflow index (a surrogate for the collective impact of geology, soils, topography and vegetation, as well as climate) is found to be the dominant control on the shapes of the normalized TFDC and SFDC, whereas the product of maximum daily precipitation and the fraction of non-rainy days was found to control the shape of the FFDC. These relationships, arising from the separation of total runoff into its two components, provide a potential physical basis for regionalization of FDCs, as well as providing a conceptual framework for developing deeper process-based understanding of the FDCs

    The Surviving Sepsis Campaign: Basic/Translational Science Research Priorities∗

    Get PDF
    © 2020 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved. Objectives: Expound upon priorities for basic/translational science identified in a recent paper by a group of experts assigned by the Society of Critical Care Medicine and the European Society of Intensive Care Medicine. Data Sources: Original paper, search of the literature. Study Selection: By several members of the original task force with specific expertise in basic/translational science. Data Extraction: None. Data Synthesis: None. Conclusions: In the first of a series of follow-up reports to the original paper, several members of the original task force with specific expertise provided a more in-depth analysis of the five identified priorities directly related to basic/translational science. This analysis expounds on what is known about the question and what was identified as priorities for ongoing research. It is hoped that this analysis will aid the development of future research initiatives

    Average stresses and force fluctuations in non-cohesive granular materials

    Full text link
    A lattice model is presented for investigating the fluctuations in static granular materials under gravitationally induced stress. The model is similar in spirit to the scalar q-model of Coppersmith et al., but ensures balance of all components of forces and torques at each site. The geometric randomness in real granular materials is modeled by choosing random variables at each site, consistent with the assumption of cohesionless grains. Configurations of the model can be generated rapidly, allowing the statistical study of relatively large systems. For a 2D system with rough walls, the model generates configurations consistent with continuum theories for the average stresses (unlike the q-model) without requiring the assumption of a constitutive relation. For a 2D system with periodic boundary conditions, the model generates single-grain force distributions similar to those obtained from the q-model with a singular distribution of q's.Comment: 18 pages, 10 figures. Uses aps,epsfig,graphicx,floats,revte

    Religious diversity, empathy, and God images : perspectives from the psychology of religion shaping a study among adolescents in the UK

    Get PDF
    Major religious traditions agree in advocating and promoting love of neighbour as well as love of God. Love of neighbour is reflected in altruistic behaviour and empathy stands as a key motivational factor underpinning altruism. This study employs the empathy scale from the Junior Eysenck Impulsiveness Questionnaire to assess the association between empathy and God images among a sample of 5993 religiously diverse adolescents (13–15 years old) attending state maintained schools in England, Northern Ireland, Scotland, Wales, and London. The key psychological theory being tested by these data concerns the linkage between God images and individual differences in empathy. The data demonstrate that religious identity (e.g. Christian, Muslim) and religious attendance are less important than the God images which young people hold. The image of God as a God of mercy is associated with higher empathy scores, while the image of God as a God of justice is associated with lower empathy scores
    • …
    corecore