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Abstract. The goal of this paper is to explore the pro-
cess controls underpinning regional patterns of variations of
streamflow regime behavior, i.e., the mean seasonal varia-
tion of streamflow within the year, across the continental
United States. The ultimate motivation is to use the result-
ing process understanding to generate insights into the phys-
ical controls of another signature of streamflow variability,
namely the flow duration curve (FDC). The construction of
the FDC removes the time dependence of flows. Thus in or-
der to better understand the physical controls in regions that
exhibit strong seasonal dependence, the regime curve (RC),
which is closely connected to the FDC, is studied in this
paper and later linked back to the FDC. To achieve these
aims a top-down modeling approach is adopted; we start
with a simple two-stage bucket model, which is systemat-
ically enhanced through addition of new processes on the
basis of model performance assessment in relation to ob-
servations, using rainfall-runoff data from 197 United States
catchments belonging to the MOPEX dataset. Exploration of
dominant processes and the determination of required model
complexity are carried out through model-based sensitivity
analyses, guided by a performance metric. Results indicated
systematic regional trends in dominant processes: snowmelt
was a key process control in cold mountainous catchments
in the north and north-west, whereas snowmelt and vege-
tation cover dynamics were key controls in the north-east;
seasonal vegetation cover dynamics (phenology and inter-
ception) were important along the Appalachian mountain
range in the east. A simple two-bucket model (with no other

additions) was found to be adequate in warm humid catch-
ments along the west coast and in the south-east, with both
regions exhibiting strong seasonality, whereas much more
complex models are needed in the dry south and south-
west. Agricultural catchments in the mid-west were found
to be difficult to predict with the use of simple lumped mod-
els, due to the strong influence of human activities. Overall,
these process controls arose from general east-west (season-
ality) and north-south (aridity, temperature) trends in climate
(with some exceptions), compounded by complex dynamics
of vegetation cover and to a less extent by landscape factors
(soils, geology and topography).

1 Introduction

This is the second paper of a 4-part series (the others being
Cheng et al., 2012; Coopersmith et al., 2012; and Yaeger et
al., 2012) that attempts to understand the physical controls
on regional patterns of variations of signatures of stream-
flow variability, with a particular focus on the flow duration
curve (FDC). Instead of directly exploring the FDC, a key
frequency-based signature of daily streamflow variability, as
in the first paper (Cheng et al., 2012), we will approach it
from a different perspective, exploring regional patterns of
another signature of streamflow variability, the regime curve
(RC), which denotes the mean seasonal variation streamflow.
This is motivated by a previous modeling study in hypo-
thetical catchments by Yokoo and Sivapalan (2011), which
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suggested that the regime curve contains valuable informa-
tion on the middle part of the FDC, serving as the bridge
between the high and low flows at either ends of the FDC,
and that understanding the physical controls of the regime
curve can assist in achieving the same regarding the FDC.
An empirical study of the FDCs of 197 catchments across
the United States presented by Cheng et al. (2012), as part
of the present study, has provided empirical support to these
model predictions.

Motivated by the findings of Yokoo and Sivapalan (2011)
and Cheng et al. (2012), the goal of this study is to explore
the process controls of regime behavior, i.e., seasonal varia-
tion of streamflow, through a comparative study of 197 catch-
ments located across the continental United States, covering
a range of climates and physiographic properties, and be-
longing to the MOPEX dataset. This is essentially a data-
based study, assisted by process-based modeling. Instead of
applying an existing model to all 197 catchments, the anal-
ysis involves systematic model development and assessment
of model predictions and performance in comparison to ob-
served data. This downward or top-down approach to model
development (Kleměs, 1983; Jothityangkoon et al., 2001;
Farmer et al., 2003; Sivapalan et al., 2003; Bai et al., 2009;
Thompson et al., 2011) commenced with the development
of a simple two-bucket model (hereafter referred to as the
“base model”). This model was initially applied to all 197
catchments, and its performance assessed. Guided by alterna-
tive hypotheses regarding the reasons for the poor fits against
regime curves estimated from observed streamflow data, the
model was enhanced step by step through addition of new
processes initially left out of the base model. Model devel-
opment was continued until the model performance could
not be improved any longer. The complete model was then
utilized in sensitivity studies to decipher (a) the dominant
process controls on the regime curve and (b) the minimum
complexity of models (i.e., the mix of processes required)
needed to achieve a satisfactory fit to the empirical regime
curves. In this way it is hoped to develop an understanding
of the process controls of the regime curves across the con-
tinental United States, and also the main climatic and land-
scape factors that contribute to the regional patterns of the
process controls underpinning the regime curves.

The work presented in this paper is an exercise in com-
parative hydrology (Falkenmark and Chapman, 1989; Siva-
palan, 2009), where the goal is to develop generalizable un-
derstanding through comparative analysis of rainfall-runoff
data in catchments located along a climatic or other gradient.
Instead of studying one catchment in considerable detail, the
focus is on the use of simpler models to discover features or
process controls that are similar or different amongst a pop-
ulation of catchments (Sivapalan et al., 2011). Finally, the
assessment of catchment response is with respect to holistic
signatures of catchment response (e.g., flow duration curves,
regime curve, flood frequency curve etc.) and not in terms of
detailed process descriptions. This Darwinian (Harte, 2002;

Sivapalan et al., 2011) and functional (Black, 1996; Siva-
palan, 2005; McDonnell et al., 2007; Wagener et al., 2007;
Sawicz et al., 2011) approach to comparative data analysis
and modeling is in contrast with much of the past research in
catchment hydrology modeling, which has focused on devel-
oping predictive understanding in individual catchments on
the basis of models based on individual processes or inter-
nal descriptions (Dooge, 1986). Such bottom-up approaches
have been hampered by the inability to map the heterogeneity
of subsurface pathways and process complexity. Extrapola-
tion to and prediction of catchment responses across different
places and a range of scales has remained a challenging prob-
lem. A synthesis of these two top-down and bottom-up ap-
proaches is possibly the key to developing new understand-
ing and new theories of hydrologic responses at catchment
scales. The present study is a step in this direction.

The paper begins with information on the data used in the
study and the methodology used to achieve its aims, which is
presented next in Sect. 2. This section presents in particular
the outlines of the downward approach to model develop-
ment adopted in the paper, and procedures for model calibra-
tion and model performance assessment. Section 3 presents
an illustration of the model development exercise, using the
results from nine selected example catchments. This is fol-
lowed, in Sect. 4, by a comparative assessment of model per-
formance to determine (a) the dominant process control of
the regime curve for the entire population of catchments, (b)
the minimum model complexity required to achieve satisfac-
tory predictions of the regime curves, and (c) the manifes-
tations of these process controls on the shapes of the FDCs.
The results are summarized in the form of a schematic di-
agram. Section 5 summarizes the main conclusions of the
study and recommendations for further research.

2 Data and methodology

2.1 Data

This is a study in comparative hydrology and uses data
from 197 catchments located across the continental United
States belonging to the MOPEX dataset and spanning a va-
riety of climates and physiographic regions, with over 50 yr
of continuous daily climatic and flow data. Daily precipita-
tion (P ), temperature (T ), and potential evaporation (PET)
time series are used as climate inputs, while the daily flow
data are used to generate regime curves (RCs), 50-yr aver-
ages of streamflow for each day of the year, which are used
for model development, calibration and comparative perfor-
mance assessment. The PET was calculated based on the
NOAA Pan Evaporation Atlas (NOAA, 1982), where it was
estimated using the Penman (1948) method, and the solar ra-
diation required in the calculation was estimated from per-
cent sunshine (Hamon et al., 1954). The mix of vegetation
types for each catchment and the characteristic LAI (leaf
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area index) profiles for each vegetation type were obtained
from the NASA Land Data Assimilation Systems (available
at: http://ldas.gsfc.nasa.gov/nldas/NLDASmapveg.php). The
composite LAI profile for each catchment, which is then used
as input to the models, is calculated as the average of the
monthly values for each vegetation type from the Mosaic
vegetation dataset (University of Maryland (UMD) vegeta-
tion classification, with 14 classes in total), weighted by the
area fraction of each vegetation type within the catchment.

Nine example catchments, chosen from this dataset and
spread across the country (from north to south, west to east,
and dry to humid), are used to highlight the diversity of
regime behaviors exhibited within the continental United
States. Besides, they are also used to illustrate the system-
atic, downward approach to model development (Sivapalan
et al., 2003) that is eventually implemented in the 197 study
catchments. They are selected based on both their locations
and their classes within the Köppen climate classification
map. Therefore, we can consider them representative of the
climate conditions under the regional similarity assumption
(Merz and Bl̈oschl, 2004; Patil and Stieglitz, 2011), even
though they are not wholly representative of the whole coun-
try. Figure 1 presents the empirical regime curves of the
nine selected catchments (estimated over the calendar year),
which are located in the states of Washington (WA), Idaho
(ID), New York (NY), California (CA), Missouri (MO),
Georgia (GA), Texas (TX) and Florida (FL). Regime curves
are presented forP , PET, and total streamflow (Q), as well as
the fast flow (Qf) and slow flow (Qu) components of mea-
sured streamflow. The fast flow and slow flow components
were obtained by the baseflow separation algorithm of Lyne
and Hollick (1979):

Qu(i) = aQu(i − 1) +
1− a

2
(Q(i) + Q(i − 1)) (1)

where a is the filter parameter, which was set to 0.925
(Brooks et al., 2011). Since the hydrologic partitioning is
not strongly sensitive to baseflow separation methods (Troch
et al., 2009), we will use this easily implementable algo-
rithm for the baseflow separation in this study. The RCs for
PET show evident similarity with an almost sinusoidal vari-
ation with a uniform peak near the middle of the year, and
also differences in amplitudes across the continental United
States, exhibiting significant regional variations. For compar-
ative purposes, the aridity index (AI), which is the ratio of
annual PET to annual precipitation, is also noted in Fig. 1.

Individually, catchments near the east coast (NY, GA, FL)
are relatively humid with AI< 1. In the north-east, e.g., NY,
precipitation tends to remain constant throughout the year
without much seasonality. In the south-east, rainfall season-
ality increases north to south (GA, FL), with FL exhibiting
strong precipitation seasonality that is almost in-phase with
PET, due in part to the influence of the hurricane season.
Consequently, while within-year variability of flows tends to
decrease as we move from north to south along the east coast,

the timing of peak flow shifts from March in NY to Septem-
ber in FL. As we move east to west in the north (NY, ID,
WA), seasonality of precipitation increases, indeed becoming
out of phase with PET (note ID and WA, which exhibit strong
out-of-phase seasonality). NY and ID exhibit pronounced
peak flows during spring not seen in the south, evidently due
to snowmelt, whereas the catchment in WA experiences bi-
modal streamflow variability, during spring and again in win-
ter. In the middle of the continental United States, the aridity
index increases from the north (ID) to south (TX), with the
seasonality of precipitation undergoing a significant transfor-
mation, culminating in a bi-modal distribution in TX (peaks
in spring and again in autumn). In TX, because of high arid-
ity, with PET> P over the entire year, there is hardly any
streamflow observed. Catchments on the west coast are very
diverse, although they all display a precipitation seasonality
that is out of phase with PET. The Washington catchment
has flow peaks not only in winter but also in spring (likely
arising from mountain snowmelt), whereas the catchment in
Northern California remains humid, exhibiting high flows
due to strong winter precipitation that coincides with low
PET but without the spring flow peak caused by snowmelt.
In Southern California, in spite of the fact that the climate
is as dry as Texas, there is spring streamflow due to the out-
of-phase seasonality between precipitation and PET. Over-
all, the variability captured in the nine example catchments
(presented in Fig. 1) provides a snapshot into the enormous
spatio-temporal variability of climate and hydrology across
the continental United States.

Figure 2 shows the corresponding FDCs of the nine se-
lected catchments, which are plotted as the sorted 50-yr daily
streamflow against the frequency of occurrence. They indi-
cate clear differences between the shapes of the FDCs of fast
flow, Qf (which show significant ephemerality in all cases),
and those of slow flow,Qu, and total flow,Q. On the other
hand, for each catchment, the FDCs ofQu and Q show
strong similarities to each other. In spite of this, there are
regional differences between the FDCs, with the nine catch-
ments dividing into two groups, organized around the arid-
ity index: TX and Southern CA exhibiting strong ephemer-
ality of flows, and all of the remaining (more) humid catch-
ments exhibiting similar FDCs, in spite of the strong differ-
ences in the timing of the within-year variability of climate
and streamflow. In other words, much of the richness in the
regime curves presented in Fig. 1 is lost in the FDCs, due to
the fact that the timing of flows is ignored in the construction
of the FDCs.

2.2 Downward approach to model development

We have already seen a glimpse into the enormous diversity
of both regime behavior and FDCs, and the connections be-
tween the two. The main goal of this paper is the elucida-
tion of the process controls underpinning regional patterns of
variation of streamflow regime. To achieve this, we adopt a
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Fig. 1. Observed regime curves of precipitation, PET, fast flow (Qf), slow flow (Qu) and total flow (Q) in the nine selected catchments
across the country. AI is the aridity index (PET/P).
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Fig. 2.Observed flow duration curves of selected nine catchments:(a) fast flow (Qf); (b) slow flow (Qu); (c) total flow (Q).

comparative modeling approach, using data from 197 catch-
ments belonging to the MOPEX dataset, and representing
strong gradients of climate (including aridity and seasonal-
ity), as well as soils, geology, topography and vegetation.

The model development follows the downward approach
pioneered by Jothityangkoon et al. (2001) and Farmer et
al. (2003), and later reviewed by Sivapalan et al. (2003).
Model development commences with a simple two-stage
bucket model, which we call the base model. We initially ap-
ply the base model to all the study catchments, and attempt to
obtain the best possible fits to the empirically derived regime
curves using an automatic calibration algorithm. Since our
motivation is to explore the first-order effects only, regime
curves can provide sufficient information for this study. To
keep it simple and robust, we use the regime curves es-
timated over the full length of record for the calibration.

Being a simple model, it is not likely that the base model
will be adequate in many catchments. In catchments where
improved parameterization cannot improve the predictions,
we incorporated additional processes that we hypothesized
would be able to fill the gap between predictions and ob-
served data. We then reapply the improved model to the study
catchments, especially to catchments for which the previous
model was found deficient, calibrate the parameters, assess
the resulting improvements in model performance, and ex-
plore possible further improvements. We continue this pro-
cess of model development until no further improvements
can be obtained in model performance. Through this sys-
tematic assessment of model prediction, model updating, and
model re-assessment, we used the model as a tool to explore
the catchments’ runoff characteristics. Note that the focus
of the modeling is on comparative assessment across many
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catchments, and exploration of dominant process controls,
and not on obtaining perfect fits to the observed streamflow
hydrographs or quantifying model performances in detail for
any given model or catchment.

The details of the base model, several model enhance-
ments that were made to the base model as part of the down-
ward approach outlined above, and the final complete model
will be presented later in Sect. 3 together with the results of
each improvement (Fig. 3). We next describe the approach
adopted for model calibration and parameter estimation, and
methods used to carry out comparative assessment of model
performance as a way to elucidate dominant process controls
and the minimum complexity required to reproduce observed
regime behavior.

2.3 Parameter calibration and model performance
assessment

The distillation of dominant processes from these 197 catch-
ments and the heterogeneous features that describe them is
accomplished in four parts. First, we must determine which
parameters are required – this was achieved, as described
in Sect. 2.2, by sequentially increasing model complexity,
adding new processes until the model’s performance is ad-
equate. Second, these parameters must be automatically cal-
ibrated for all the 197 catchments – this is done via the
Markov chain Monte Carlo (MCMC) algorithm, a tool de-
signed to search a multidimensional parameter space more
efficiently than brute force. Third, the model’s performance
must be assessed – this is done by a simple sum of squared
errors between the observed and predicted regime curves. Fi-
nally, the performance of the various models for each catch-
ment, containing differing number of parameters, must be
compared, addressing the relative differences in complex-
ity. This last step is managed with the use of the Akaike
information criterion (AIC) (Akaike, 1974), which assesses
the marginal value of each new parameter added. This sec-
tion will discuss the last three parts: parameter calibration,
model performance assessment, and process selection.

2.3.1 Parameter calibration and validation

The measured total streamflow was separated into fast flow
and slow flow through the application of the baseflow separa-
tion algorithm of Lyne and Hollick (1979), and regime curves
of both flows were calculated for the purpose of model per-
formance assessment. The full model (i.e., the base model
with all modifications) was applied to all 197 MOPEX catch-
ments to simulate the regime curves of both the fast and
slow flow; explicit Euler was used to solve the model equa-
tions; and model parameters were estimated through auto-
matic calibration, by comparing the predicted streamflow
regime curves to those estimated from observed data.

We adapted the parameter estimation method from Har-
man et al. (2011), in what is called a naı̈ve Bayesian

Fig. 3. Structure of the complete model: reservoirs are represented
in solid green boxes; green is used for state variables, blue for fluxes
and brown for model parameters. Red boxes represent the added
processes, and dashed lines denote the fluxes from these added pro-
cesses.

model. Based on the fits obtained during model applica-
tion, we assume that the errors associated with predicted
fast flow and slow flow regime curves (Qf,Qu) are ap-
proximately normally distributed, i.e.,N [x|(µ,σ 2)]. We
also assumeQf and Qu are normally distributed with
their means as the values predicted by the model (Qf =

f (P,PET,GSI,LAI ,Sb1, tw,α, tc), Qu = g(Qw, PET, GSI,
Se,Sb2, tu, tc)) with unknown variances (σ 2

f ,σ 2
u ). The

likelihood function L(X|θ) of the observationsX =

{Qf1,Qf2, . . . ,Qfn,Qu1,Qu2, . . . ,Qun}, given the model
θ = {Sb1, tw,α, tc,Se,Sb2, tu,σ

2
f ,σ 2

u } with P , PET, GSI as in-
put, can be calculated as follows:

L(X|θ) =

(∏
N(Qfi |f (P,PET,GSI,LAI ,Sb1, tw,α, tc),σ

2
f )

)
(∏

N(Qui |f (Qw,PET,GSI,Se,Sb2, tu, tc),σ
2
f )

)
. (2)

The posterior likelihood function of the model based on the
Bayes’ theorem is then

L(θ |X) =
L(X|θ)L(θ)

L(X)
, (3)

whereL(θ) is the prior distribution; since we do not have
definite information about the variables, it is set to unity as
a uniform prior distribution.L(X) is the probability of the
observations, although it is not necessary to evaluate it since
the sampling method we use depends only on ratios of suc-
cessive likelihoods, and so this term cancels.

We then employ the Metropolis algorithm (Metropolis et
al., 1953; Kuczera and Parent, 1998) adapted from Harman
et al. (2011) to sample the parameter space towards con-
structing the posterior distribution. The algorithm, a Markov
chain Monte Carlo (MCMC) technique, is able to sample the
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parameters efficiently in the vicinity of the maximum like-
lihood. Starting with an optimum based on previous model
development, we calculate the likelihood value for each ran-
domly selected set of parameters (θi+1) near the current pa-
rameter value (θi). The new parameter set is accepted if it
leads to a larger likelihood value (L(X|θi+1) > L(X|θi)),
i.e., it helps predict the streamflow regime better than the
previous set, and then a new search starts from a new set
(θi+1). However, there is the possibility that this set can lead
to another local optimum. To reach the globally optimal pa-
rameter set, we accept the inadequate parameter set if the ra-
tio of the likelihood valuesL(X|θi+1)/L(X|θi) is larger than
a uniform random value between zero and one. We run this
algorithm to search the next available parameter set that im-
proves upon the largest likelihood and to save the 500 sam-
ples in a chain. This algorithm is run twice to generate 1000
samples in total for each site. The parameter set with largest
likelihood was selected as optimal for the full model.

One of the advantages of a Bayesian framework is that
we can estimate uncertainty (Bai et al., 2009; Harman et
al., 2011): the upper and lower bounds are defined from the
plot of likelihood and parameter values. For each catchment,
throughout the MCMC sampling, there is a chain of likeli-
hood values which are added cumulatively from the smallest
parameter value; the upper and lower bounds are then defined
when the sum of the likelihood values just exceeds 95 % and
5 % of the total. The relative error is calculated as half of the
range between the upper and lower bounds as a percentage
of the parameter with the maximum likelihood value. Me-
dian relative error presented in Table 1 is the median of the
uncertainty among the catchments.

Since our goal is not to deliver precise predictions of
the streamflow time series, but rather to gain a general un-
derstanding of first-order impacts of different processes on
flow generation mechanisms along a climatic or other gra-
dient, a qualitative validation, also called “scientific valida-
tion” (Biondi et al., 2012) suits our purpose better. Scien-
tific validation can be used to identify integral processes for
which the model should account, as well as to demonstrate
the model’s ability to adequately represent reality, since val-
idation tests alone may not guard against an equifinite solu-
tion (Biondi et al., 2012). This is the essence of the down-
ward approach to modeling, as outlined in Sect. 2.2, and it
is this systematic model development procedure itself that
helps to validate the importance of each remaining process.
As a model could produce good results with a wide range of
specific parameter values, to ensure that the model produces
reasonable results with realistic parameters, the parameter set
should be considered as a combined set (Freer et al., 1996).
The Bayesian framework we used is able to find optimum
parameter sets by giving greater weight to the better sim-
ulations. These parameter sets and predictions then can be
chosen as more likely than others. In addition to the assess-
ment of model hypotheses and parameters, a multi-criteria
approach can also be used to verify model performance. In

this work, we calibrate the parameters to optimize both the
fast flow and slow flow simultaneously. This multi-objective
check helps provide information regarding where individual
subsystems or processes are significant in the catchments.
For example, some processes may not affect the total dis-
charge, but could influence the quantities of observed fast
flow (Figs. 6 and 7). A multi-objective calibration enables us
to detect those improvements in model performance that neg-
atively affect the global discharge but are beneficial for char-
acterizing the fast flow component and detecting the main
control processes.

2.3.2 Performance assessment for the full model in all
197 catchments

Even with all modifications, the model is still relatively sim-
ple, and it is probable that even the full model may not be
able to reproduce streamflow satisfactorily in catchments that
have other, perhaps anthropogenic, factors dominating the
flow generation mechanism. Therefore, after the calibration,
we assessed the model performance for all 197 catchments
and removed 45 catchments where the full model failed to
generate adequate predictions. These were mostly located in
the agricultural Midwest, many of them known to be domi-
nated by tile drains or irrigation.

Different catchments have distinct flow characteristics
(i.e., the magnitude and the variability of the flow). To com-
pare the performance among catchments, the model predic-
tions are then assessed through the use of a performance in-
dicator, the mean square error (MSE) estimated on the stan-
dardized flows (separately for both fast and slow flows) as
follows:

MSE=

∑
(SQobs− SQsim)2

N
(4)

where SQobs and SQsim are standardized flow value for ob-
served and simulated flow, andN is the length of data. Both
flows are standardized by the observed mean and standard
deviation to remove the influence of the flow characteristic
differences:

SQ=
Q − mean(Qobs)

std(Qobs)
(5)

whereQ represents the time series of flows (observed for
SQobs or model-predicted for SQsim), Qobs the time series
of observed flow, SQobs the standardized observed flow, and
SQsim the standardized simulated flow; both SQobsand SQsim
are represented by SQ in the equation as they are calculated
in the same way. The summations in Eqs. (4) and (5) are over
1–365 days, considering that we are dealing with the regime
curve only.
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Table 1.Overview of the estimated parameters for all the satisfactory catchments.

Sb1 (mm) tw (days) α Se (mm) tu (days) Sb2 (mm) tc (days)

Minimum 0.001 0.013 0.000 0.037 1.548 4.184 0.073
Mean 0.069 0.189 0.274 49.756 187.987 326.358 1.538
Maximum 1.013 0.533 0.300 339.181 1301.191 879.561 9.659
SD 0.14 0.09 0.14 69.44 221.68 183.98 1.51
Median Rel. Error (%) 33.57 33.31 23.74 46.73 24.05 11.54 29.19

2.3.3 Process selection for catchments with satisfactory
prediction by full model

For the catchments classified as satisfactory, we assume the
full model captures the dominant processes in those catch-
ments. For each well-modeled catchment, we then performed
comparative assessments of the models using different com-
binations of the four modified processes identified through
the model’s development. The comparative assessment is
carried out to determine (a) dominant processes that con-
tributed most to the reproduction of the observed regime
curves and (b) the minimum model complexity (i.e., the num-
ber and type of model enhancements needed to be added to
the base model to reproduce the observed regime curve).

The Akaike information criterion (AIC) is used to perform
this comparative performance assessment (Akaike, 1974).
The AIC is a statistical metric often used to measure the rel-
ative goodness of fit of models by generating a measure of
information loss, and is used in model selection to choose the
candidate model that minimizes information loss. Recently,
it has also been used to assess needed model complexity to
achieve the required quality of model predictions (Engelhardt
et al., 2012). The smaller the AIC value, the less information
is lost, and the better the model. Assuming, for simplicity, a
Gaussian distribution for the streamflow, we can estimate the
AIC using the following expression:

AIC = ln(Maximum Likelihood)

+2k = n ln
{∑

(SQobs− SQsim)2
}

+ 2k (6)

wheren is the sample size (i.e., in this case 365 days as we
resolve the regime curve on a daily basis) andk is the number
of parameters used in each model.

The difference between the AIC of the model prediction
after each model enhancement and the AIC of the base model
prediction, i.e.,1AIC1 = AIC0 − AIC1, is used as a mea-
sure of the improvement in model performance. Comparative
assessments of the model performance after the addition of
each process enhancement at the first level can be used to de-
termine the dominant process, i.e., the one process that helps
most to improve the prediction in comparison to that of the
base model. Similarly, the required minimum model com-
plexity is inferred also through the use of the AIC, when it
can be determined that the addition of a particular process en-
hancement does not lead to significant improvement in model
performance.

3 Illustrative results: progression of
model development

In this section we present the detailed development and
results of the model enhancement process, including the
thought processes involved in making the model choices. In
this presentation, we focus on bringing out the process con-
trols of the streamflow regime curve in qualitative terms, us-
ing some of the nine catchments presented in Figs. 1 and 2
as examples.

3.1 Base model

Yokoo and Sivapalan (2011) suggested, in terms of reproduc-
ing the flow duration curve, that a catchment’s streamflow
response can be partitioned into two different components:
fast flow (e.g., surface streamflow processes whose variabil-
ity directly reflects that of event precipitation), and slow flow
(e.g., subsurface flow whose variability reflects the strong fil-
tering of precipitation variability by flow pathways with sig-
nificantly longer residence times, and is therefore reflected in
the catchment’s regime curve).

Guided by this thinking, we start with a nonlinear, six-
parameter model operating as a two-stage filter, with two
buckets arranged in series and simulating both fast flow
and slow flow and their interactions (Fig. 3). In the first
stage, precipitation events are filtered nonlinearly into fast
streamflow and soil wetting (infiltration to deeper soil). In
the second stage, the infiltrated water is filtered (some-
what more linearly), governed by the competition between
topographically-driven subsurface drainage and vegetation-
driven evapotranspiration. In terms of streamflow generation,
the first bucket is treated as an overflow bucket, whereas the
second is treated initially as a leaky bucket (with no over-
flows). Each of the two filters (buckets) is assigned a stor-
age capacity (i.e.,Sb1 andSb2, respectively, although in the
base modelSb2 is not invoked) and associated characteris-
tic response times (i.e.,tw andtu, respectively). The second
(deeper) bucket is also assigned a root zone storage capac-
ity (i.e., Se) that is used in the prediction of transpiration.
Two more buckets are added to route the fast flow and slow
flow components separately. In reality, once the fast flow
and slow flow enter the channel, both flows are routed to-
gether. However, since we are not aiming to predict the hy-
drograph or peak flow precisely, but rather, to appropriately
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predict regime behavior, such a technique is acceptable for
our purposes. Because the drainage area of these catchments
varies from hundreds of square kilometers (102 km2) to tens
of thousands of square kilometers (104 km2), these two rout-
ing buckets are used to introduce lag time for the flow and
to attenuate the variability to obtain a smoother regime curve
more closely resembling the observed regime curve. A sixth
parameter (i.e.,tc) is used here to represent the lag times in-
troduced by flow routing in the river network.

The water balance equations for the two storage buckets
are as follows:

dS1

dt
= P − Q1f − Qw − ET1 (7)

dS2

dt
= Qw − Q2u− ET2 (8)

where S1 and S2 are the water storage in the first stage
and second stage,P the precipitation,Q1f = (S1 − Sb1)/1t

saturation excess streamflow from the first bucket,Qw =

S1/tw the wetting (infiltration) into the second bucket,
ET1 = PET(S1/Sb1) evapotranspiration from the first bucket,
Q2u = S2/tu the subsurface drainage from the second bucket,
and ET2 = PET(S2/Se) evapotranspiration from the second
bucket. The water balance equations for the two stream rout-
ing buckets are as follows:

dSc1

dt
= Q1f − Qf (9)

dSc2

dt
= Q2u− Qu (10)

whereSc1 is the water storage in the river network from the
first bucket,Qf = Sc1/tc the fast flow at the catchment outlet
after stream routing,Sc2 the water storage in the river net-
work from the second bucket, andQu = Sc2/tc the slow flow
at the catchment outlet after stream routing. The parameter
tc is the mean residence time – the catchment-scale-averaged
time raindrops need to travel from hillslope to catchment out-
let. It relates to the drainage area, river network structure,
topographic gradient, etc.; however, in this paper we will es-
timate it through calibration. In spite of treating these runoff
components separately because of their distinct generation
mechanisms and flow paths, still they are routed together in
the network once they enter river channels; thus we use the
same mean residence time parameter for both fast flow and
slow flow.

This base model works well in humid catchments that ex-
hibit strong seasonality (Fig. 4) such as those found in North-
ern CA, WA, and FL. In this case, there was little enhance-
ment needed in spite of the fact that these are vegetated catch-
ments. Since precipitation is a main driver of the model, it is
reasonable to say that the model works well in catchments
whose streamflow response follows a similar pattern as that
of the precipitation.
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Fig. 4.Comparison of regime curves ofP , PET, ET,Q, Qf , andQu
in a catchment in Northern CA between observation (blue line) and
base model simulation (red line).

3.2 Modification 1: snowmelt

The base model worked well in many humid catchments
that exhibited strong seasonality (e.g., catchments in North-
ern CA and Florida, Fig. 1). However, it failed in over half
of the catchments, many of which were the northern, colder
catchments. As seen in Fig. 1, most of these catchments (e.g.,
WA, ID, NY) experience sharp peak flows in spring. Consid-
ering the temperatures at this time of the year, a plausible
reason for this is snowmelt, especially in ID and NY. Win-
ter precipitation at these latitudes, especially in mountainous
regions, is typically in the form of snow which accumulates
on the ground during winter months and remains there un-
til spring when the temperatures increase and the snowpack
melts. To improve the model further in these catchments,
we incorporated a simple snowmelt component to the base
model using the degree-day factor method (e.g., Eder et al.,
2003), based on available mean daily air temperatures. The
snowmelt component added to the model is as follows:

dSn

dt
= Ps− Qn (11)

{
Pr = P,

Ps = P,

T > Tcrit
T < Tcrit

(12)

Qn = min
{
Hposddf,Sn

}
,

whereHpos= max{T − Tcrit,0} (13)

whereSn is the storage in the snow pack,Ps the precipitation
in the form of snow,Pr the precipitation in the form of rain,
Qn the snowmelt,Tcrit the snow-rain transition temperature
(assumed here as 0◦C), ddf (1.5 mm day−1 K−1) the degree
day factor, andHpos the temperature excess over the critical
temperature, used in combination with the degree-day factor,
as a surrogate for the driving forces for snowmelt.
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Fig. 5.Comparison of regime curves ofP , PET, ET,Q, Qf , andQu
in a catchment in ID among observation (blue line), base model (B,
red line) and base model with snowmelt component (BS, solid red
line).

Figure 5 presents a comparison of the predictions of the
base model with those of the enhanced model that included
the snowmelt component for the catchment in Idaho. The re-
sults show that the enhanced model leads to a dramatic im-
provement in the ability to predict streamflow timing, du-
ration and magnitude, even though the enhancements for
snowmelt have been rather parsimonious. On the other hand,
the catchment in NY (we are not presenting a figure for the
sake of brevity) required further modifications to reproduce
the observed regime curves.

3.3 Modification 2: subsurface-influenced fast flow

With the incorporation of the snowmelt component, the
model was able to capture the flow peak during late spring
and early summer that was caused by snowmelt. It performed
well in the northern mid-western mountainous catchments
(e.g., ID, WY, etc.), but continued to under-estimate the fast
flow during late winter and early spring, in the northeast-
ern catchments (e.g., NY) where snowmelt was significant,
and also southeastern (e.g., GA, VA) catchments, which ex-
hibit low seasonality of precipitation and present little or no
snowmelt impact. The rainfall during this period is similar to
the rainfall experienced in summer but generates much larger
streamflow and this non-linear rainfall-runoff response could
be related to the high water table (Lana-Renault et al., 2007;
Li et al., 2011). These studies have shown that, during the wet
season, the hydrological response could be more dependent
on the water table level than simply the precipitation charac-
teristics (depth and intensity). Along with the influence of the
rising water-table level, the dominant flow generation mech-
anism would then switch from infiltration excess to satura-
tion excess. Analysis of internal dynamics based on model
predictions (not presented here for brevity) showed that the
under-estimation of fast flow during spring was accompanied
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Fig. 6.Comparison of regime curves ofP , PET, ET,Q, Qf , andQu
in a catchment in GA among observation (blue line), base model
with snowmelt (BS, solid red line) and base model with snowmelt as
well as subsurface-influenced fast flow component (BSG, red dotted
line).

by large amounts of water stored in the second bucket, sug-
gesting that water that otherwise would overflow to the river
is being kept in storage due to the absence of an overflow
mechanism in the second bucket. This may explain the under-
estimation of fast flow during spring, when PET and ET are
small.

As a result, an overflow mechanism that mimics a satura-
tion excess-induced fast flow (Q2f) mechanism (albeit in a
somewhat conceptual or qualitative manner) was introduced:

Q2f =
S2 − Sb2

1t
(14)

whereQ2f is the overflow from andSb2 is the threshold stor-
age capacity of the second bucket.

To illustrate the impact of this process, we applied the
model to a catchment with little snowmelt influence. Fig-
ure 6 presents a comparison of model predictions in GA be-
tween the base model (with snowmelt included) and an en-
hanced model that included the snowmelt and the subsurface-
influenced fast flow component. The results show that this
enhancement indeed helped to increase fast flow during win-
ter and early spring, but still over-estimated the fast flow
during summer and autumn seasons; the underestimation in
slow flow was not improved. The improvement due to this
component is less significant than the improvement due to
the snowmelt component in the ID mountainous catchment,
because there snowmelt is the dominant streamflow gener-
ation mechanism, and as such was able to transform both
the timing and magnitude from precipitation to streamflow.
In GA, other processes such as interception loss and phe-
nology are all important in streamflow generation, and thus
the streamflow regime curves follow the trend of precipita-
tion regime curves, which has already been captured by the
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base model. The addition of these other processes helps to
adjust the peak flows rather than alter both timing and mag-
nitude of the streamflow dramatically, as snowmelt did in the
ID catchment. However, this does not mean that subsurface-
influenced fast flow is not important; as we will show in
Sect. 3.5, the combination of all three processes does im-
prove considerably the estimation of both streamflow timing
and magnitude.

3.4 Modification 3: interception loss

Although the incorporation of the subsurface-influencedQf
helped improve the fast flow prediction during late winter
and early spring, we still tended to over-estimate the magni-
tude ofQf for most of the year. This was especially evident
in several humid catchments where seasonality of precipi-
tation is not significant (e.g., no snow and precipitation is
uniform throughout the year) and vegetation cover variabil-
ity is the strongest controlling factor. In these catchments,
Qf tended to be over-estimated during the growing season
(from late spring to autumn) when vegetation cover begins
to reach its maximum value. Since catchments on the east
coast have dense vegetation cover, the overestimation of sur-
face flow during the growing season and the underestimation
during the non-growing season could be caused by the pres-
ence of vegetation. One of the effects of vegetation on the
water cycle is canopy interception (Savenije, 2004). It has
been shown that interception could have a significant impact
on the water cycle (Beven, 2001; Savenije, 2004); evapora-
tion from intercepted water may reach 35 % of total rainfall
in wet catchments and over 40 % in dry areas (Calder, 1990).
This influence can then affect the infiltration, antecedent soil
moisture, and runoff generation (Keim et al., 2006). Given
the high proportion of vegetation cover in these catchments,
the interception mechanism should not have been ignored.
Therefore, to reduce the overestimation of surface flow dur-
ing the growing season, we added the interception loss com-
ponentI as follows:

I = αP
LAI

LAI max
(15)

whereα is the fraction of precipitation that is intercepted
(a model parameter, to be estimated by calibration), LAI re-
motely sensed estimates of LAI, and LAImax the annual max-
imum of the LAI used to normalize the LAI time series.

Figure 7 shows the comparison of model predictions by the
model enhanced with both the snowmelt and the subsurface-
influenced fast flow component and a further enhanced one
with snowmelt, subsurface-influenced fast flow, and intercep-
tion loss. The results show that the incorporation of canopy
interception helps reduce the fast flow magnitude through-
out the year and increases the slow flow during winter and
early spring slightly, but is still not able to capture the strong
seasonality in the flow.
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Fig. 7.Comparison of regime curves ofP , PET, ET,Q, Qf , andQu
in a catchment in GA among observation (blue line), base model
with snowmelt and subsurface-influenced fast flow component
(BSG, solid red line) and base model with snowmelt, subsurface-
influenced fast flow and interception loss component (BSGI, red
dotted line).

3.5 Modification 4: phenology

In several catchments where the intra-annual variability of
precipitation is relatively small, seasonality of flow is never-
theless much stronger than that of precipitation. The incor-
poration of the interception loss reduced the fast flow magni-
tude without differentiation, but was not able to increase the
seasonality in the flow; the model continued to underestimate
the spring flow peak of both fast and slow flow components.
This is even more pronounced in some semi-humid and hu-
mid catchments (e.g., GA, VA), where rainfall arrives year-
round without significant seasonality, as illustrated by GA in
Fig. 1. We attribute this discrepancy to the growth cycle of
vegetation and its impact on both interception and transpira-
tion. Therefore, we applied a correction to the PET data using
a growing season index (GSI) (Thompson et al., 2011) in or-
der to improve the estimates of actual evapotranspiration and
account for the effects of these plant water-use patterns, i.e.,
phenology. The phenology-corrected PET, denoted as PETc,
is estimated as follows:

PETc = PET× GSI (16)

GSI=


0 T < Tmin

T −Tmin
Tmax−Tmin

Tmin < T < Tmax

1 T > Tmax

(17)

whereTmin andTmax were originally proposed as the min-
imum and maximum threshold soil temperatures of−2◦C
and 5◦C (Jolly et al., 2005) to cover a large range of species.
Here, we approximate them by air temperatures of−5◦C and
10◦C (Thompson et al., 2011) due to the non-availability of
soil temperatures.
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Figure 8 shows the comparison of the predictions by the
base model with snowmelt, subsurface-influenced fast flow,
and interception added to it and an enhanced model that in-
corporated phenology as well. The introduction of the grow-
ing season index (GSI) affects the value of bothQf andQu
by increasing it substantially during winter and spring when
transpiration from the vegetation is much smaller. This can
also be seen in the simulated ET, where the ET for the model
without phenology closely follows the PET during winter
(since there is no restriction on water availability during this
period), whereas ET for the enhanced model is much lower
from November to April, thus increasing both the slow flow
and fast flow substantially. With these three modifications,
the model now performs well in these forested catchments.
As a result, we reach the final and complete model result-
ing from the four different enhancements presented above
(Fig. 3), and the final water balance equations for the two
complete hillslope buckets are shown below:

dS1

dt
= Pr − I + Qn − Q1f − Qw − ET1 (18)

dS2

dt
= Qw − Q2f − Q2u− ET2 (19)

4 Comparative model performance assessment

4.1 Performance of complete model across study
catchments

The key aim of this paper is to use the complete model de-
veloped through the use of the downward approach above to
explore (a) the dominant process controls that underpin the
magnitude and timing of the regime curve, and (b) the min-
imum model complexity, in terms of the mix of processes,
needed to reproduce the observed regime curves. Before we
embark on this exploration, which is the subject matter of
this section, we need to reassure ourselves that the complete
model is sufficient for these purposes. For this reason we as-
sessed the quality of model predictions on the basis of the
MSE for normalized flows (see Eq. 4). Simulation results
with the full model showed that model simulations of the 50-
yr averaged fast flow and slow flow regime curves fitted the
corresponding empirical regime curves well in the eastern
and western catchments, but failed in several mid-western
catchments (e.g., Iowa) and also in extremely dry catchments
in Oklahoma and Texas.

Catchments in the southwest (TX, OK) are very dry, with
aridity indices exceeding 1.5. The primary vegetation cover
is grassland, and rivers are ephemeral – there can be as few
as just one flow event during the entire year. Catchment re-
sponses in these areas were found to be much more difficult
to predict with the use of simple lumped models, compared
to the humid, and more forested catchments in the east, or
the highly seasonal catchments on the west coast. Another
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Fig. 8.Comparison of regime curves ofP , PET, ET,Q, Qf , andQu
in a catchment in GA among observation (blue line), base model
with snowmelt, subsurface-influenced fast flow and interception
loss component (BSGI, solid red line) and the complete model (BS-
GIP, red dotted line).

area where the complete model did not produce good pre-
dictions is in the Midwest (especially catchments in Iowa)
where the dominant vegetation cover is agricultural and an-
thropogenic effects related to agricultural water extractions
cannot be ignored. For example, in the Raccoon River catch-
ment in Iowa, subsurface (i.e., tile) drainage is estimated to
cover over 40 % of the area (Zucker and Brown, 1998). Ad-
ditionally, there appears to be considerable human-induced
water extraction (Hatfield et al., 2009). These human activi-
ties have significantly altered the hydrologic response, which
our simple model is not yet able to address.

As a simple model, we would not expect that it could ac-
commodate anthropogenic activities or very complex catch-
ments; therefore, we need to eliminate these catchments
where the model performs poorly. To ensure that the model
captures the dynamics as well as the volume of the stream-
flow, we use MSE as our criterion. The decomposition of the
MSE (or Nash-Sutcliffe efficiency) shows that the MSE con-
sists of three components: the mean, variance and correla-
tion coefficient (Gupta et al., 2009). However, as the error is
scaled by the standard deviation, it can be problematic for
comparisons amongst catchments. To avoid this, we stan-
dardized the flow before the MSE calculation. We selected
the 90 % of the catchments with the lowest MSE in fast flow,
slow flow, and total flow separately and then obtained the in-
tersection of these three sets to determine those catchments
that had the lowest MSE in fast flow, slow flow, and total flow
simulation. The resulting 152 catchments were then consid-
ered as “satisfactory” catchments, and the regional break-
down of the MOPEX catchments into “satisfactory” and “not
satisfactory” is presented in Fig. 9. Note that the “not satis-
factory” catchments are left out from the analyses of com-
parative performance assessments presented next.
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Fig. 9. Spatial distribution of the goodness of the model prediction
in 197 catchments.

4.2 Regional distribution of model parameters

In the rest of the analysis, we will focus on the catchments
in which the complete model generated satisfactory regime
curves for both fast flow and slow flow. Table 1 presents the
overview of the parameters in all the “satisfactory” catch-
ments: the mean, minimum, maximum, standard deviation
and median relative error. The median relative error is the
lowest, close to 10 % (11.5 %) for the second bucket capacity
(Sb2), around 20 % for interception loss (α) and the subsur-
face flow drainage time scale (tu), around 30 % for the mean
residence time associated with river network routing (tc), the
characteristic time scale of wetting (tw) and the first bucket
capacity (Sb1), and 46 % for the root zone soil moisture ca-
pacity (Se). Given the simplicity of the model and the large
variations between catchments, this is deemed acceptable.

The average values of the key parameters are presented
in Table 2 in detail for three catchment groups to give an
impression of the regional distribution of these parameters:
eastern US, central US, and western US. The eastern catch-
ments are located near the east coast and within the Ap-
palachian mountain region, while the western catchments are
those located on the west coast and in the Rocky Mountains
area; the remainder of the catchments forms the central US
group (after removal of catchments deemed “not satisfac-
tory”). Nevertheless, these results should be considered as
indicative only, given the conceptual nature of the models
and the relative parsimony of model structures used.

Table 2 shows that interception loss as a fraction of precip-
itation (α), which has a significant impact on the water bal-
ance, especially on evaporation (Liu, 1997), lies in the 20–
30 % range. Generally, it is larger on the east coast where
vegetation is dense, and smaller in the dry catchments in
the west and south-west (e.g., Texas and Southern Califor-
nia). This is consistent with what would be expected: forests
are believed to be able to intercept more rainfall than grass-
lands (Deguchi et al., 2006), while coniferous forests tend to

retain more rainfall than broad-leaved forests (Marin et al.,
2000). Average bucket storage capacities of the first (surface)
bucket (e.g.,Sb1) do not exhibit significant differences be-
tween the three regions. On the other hand, bucket capacities
of the second (subsurface) bucket (e.g.,Sb2) show consider-
able variation: the mean value ofSb2 in eastern US catch-
ments is comparatively smaller than those in the central US,
which is smaller yet than those in the west, suggesting effec-
tively deeper soils as we move towards the west and south-
west. The root zone soil moisture capacity,Se, is small in
north-eastern catchments and in some southern mountainous
catchments, reflecting the presence of thin soils and shallow-
rooted trees. Root zone storage capacity turns out to be high-
est in central parts of the continental United States, reflect-
ing deeper soils and deep rooted vegetation. This increas-
ing trend of soil moisture capacity from east to west may be
related to climate seasonality (Samuel et al., 2008): in the
eastern, humid catchments, where rainfall arrives through-
out the year, the low moisture storage capacity and higher
slopes help to drain this water quickly, leading to a smaller
quantity of storage; in the center of the continental United
States, with moderate seasonality and flat topography, the
Midwestern catchments are usually characterized by deep
soils and stronger soil moisture retention characteristics (En-
dres et al., 2001; McIsaac et al., 2010); near the west coast,
due to the strong seasonality inP , which is out of phase with
PET, the soil moisture tends to accumulate during the wet
season, leading to higher overall storage. The characteristic
time scale of wetting (tw) is longest in the east, smaller in
the west, and smallest in the central US. This trend is oppo-
site to that of the subsurface flow drainage time scale (tu).
This must reflect the effects of soil permeability and topo-
graphic slope, which show a similar regional pattern with re-
spect totu. This is consistent with the findings of McGuire
et al. (2005) in seven catchments with diverse geologic and
geomorphic conditions: instead of basin area, the residence
time is strongly related to terrain indices representing flow
path distance and gradient. The mean residence time asso-
ciated with river network routing (tc) is a function of topo-
graphic slope and drainage area: the larger the drainage area,
the flatter the topography, the longer is the network residence
time. In any case, the tc-values are much smaller than those
of subsurface flow residence time,tu. Since we are mainly
concerned with the regime curve, the magnitudes oftw and
tc are too small to have any impact on the streamflow regime
curve, whereas the magnitude oftu is highly critical.

4.3 Elucidation of dominant processes for fast flow and
slow flow

Having completed the modeling of all 197 catchments, we
then sought to identify which of the four process modifica-
tions we made to the base model contributed most to im-
proving the model performance. This involved systematic
sensitivity analyses with the model, where we run the base
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Table 2.Mean value, standard deviation and median relative error of 7 parameters for eastern, central and western catchments.

Sb1 tw
α

Se tu Sb2 tc
(mm) (days) (mm) (days) (mm) (days)

East Mean 0.065 0.218 0.306 36.846 120.260 281.858 1.469
SD 0.158 0.078 0.128 49.540 64.644 163.704 1.268
Median Rel. Error (%) 31.47 30.35 13.87 42.65 21.10 9.49 24.26

Center Mean 0.068 0.140 0.221 78.007 323.567 350.640 1.763
SD 0.098 0.084 0.147 101.615 282.408 160.895 2.049
Median Rel. Error (%) 11.32 17.50 20.93 32.46 16.78 9.34 14.39

West Mean 0.062 0.159 0.225 56.099 189.287 394.281 1.447
SD 0.094 0.100 0.132 81.326 351.256 262.644 1.826
Median Rel. Error (%) 29.19 23.86 20.34 51.94 29.30 7.71 27.28

model with each one of the process enhancements, one by
one, while maintaining all remaining model parameters at
their previously calibrated values. For presentation purposes,
we will denote the base model and the 4 subsequent addi-
tions by the names M0 to M4, where the numbers (1–4) refer
to the number of processes added to the model. We then use
the letters P, I, S, and G to specify the added process, respec-
tively as phenology, interception, snowmelt, or subsurface-
influenced fast flow. For example, M1P is a Level 1 model,
i.e., the base model plus phenology, and M3PIS is a Level
3 model, with base model plus phenology, interception and
snowmelt. We estimated the AIC for the base model (AIC0)

and the AICs for each of four Level 1 models (AIC1P, AIC1I,
AIC1S, and AIC1G), along with the corresponding reductions
in AIC (1AIC1P, 1AIC1I, 1AIC1S, and1AIC1G). Based on
assessments of model performance of the four Level 1 mod-
els (M1), the process addition that leads to the highest im-
provement in model performance (i.e., in relation to the base
model) would then be deemed as the dominant process. For
example, in the Idaho catchment (Figs. 1 and 5),1AIC1S
turned out to be largest, on the basis of which we could con-
clude that snowmelt is the dominant process in this catch-
ment.

Note that if, in a particular catchment, none of the pro-
cesses contributed to a decrease in AIC through its addition
to the base model, or if the reduction is too small (e.g., less
than 3 %), we would then consider the base model to be suf-
ficient. The latter means that the magnitude of precipitation
and its seasonality are the main or dominant controls on the
regime curve, and the roles of vegetation, temperature and
topography are second-order effects, and thus can be left out
in any initial model simulations.

Figure 10 presents the results of this assessment of domi-
nant processes for the 152 satisfactory catchments, separately
for fast flow and slow flow. For fast flow (Fig. 10a), generally
the dominant process in northern catchments is snowmelt due
to the considerable amount of precipitation as snow (these
catchments are circled and labeled as a, b, c, and d). Yet,
there are slight differences among them: the northwestern
catchments (circles a, d) are mountainous catchments, and

Fig. 10. The most important process in catchments with effective
model prediction:(a) fast flow,(b) slow flow. The circled areas rep-
resent regions of process similarity.

snowmelt is the only additional process needed. Moving east
to the center of the continental United States, i.e., catchments
in the Midwest such as in Indiana (circle b), catchments
are much flatter and winter temperatures are higher than in
the northwestern mountainous catchments. Snowmelt is no
longer the only dominant process for these catchments; some
are dominated by subsurface-influenced fast flow, due to the
fact that the soil in these places is silty clay loam with rel-
atively smaller subsurface drainage rates, and consequently
the water table could rise to the surface during parts of the
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year, generating saturation excess overland flow. On the other
hand, on the east coast, the Appalachian catchments are cov-
ered with dense vegetation, and phenology is therefore dom-
inant. The snow influence fades in the central and southern
catchments, where vegetation impact increases (circles e, f,
g). For the central catchments in Missouri (circle e), snow
and vegetation impacts are equally important; in some of the
northern catchments snowmelt helps to reduce AIC more and
in others phenology and/or interception reduces AIC more.
Looking at the eastern forested watersheds (circle f) where
snow is rarely seen, phenology and interception are the most
dominant processes in some of them, and in others, due to the
small soil moisture storage capacity, subsurface-driven fast
flow appears to be important. Catchments in New Mexico
and Arizona (circle g), even though they are arid, do contain
woodland or wooded grassland coverage over 60 % of the
catchment areas, and, given the dry climate, streamflow is
extremely sensitive to vegetation effects. Southeastern catch-
ments (circle h) are marked here as base model dominant.
Although there is dense vegetation coverage in these catch-
ments, seasonality in climate makes simulation much eas-
ier. The catchments in Florida experience a wet season from
mid-summer to early autumn (Fig. 1i); they receive abun-
dant rainfall that is caused by frequent convective activity as
well as the occasional tropical storms similar to those expe-
rienced in monsoon Asia (Fernald and Purdum, 1998). The
catchments in Georgia also display seasonality of precipi-
tation; they receive heavy rainfall during winter and spring
when the evapotranspiration rate is quite low, thus enhancing
the seasonality observed in streamflow generation (Opsahl et
al., 2007). The phenology influence is mitigated somewhat
in these southern catchments since the duration of vegeta-
tion coverage is much longer than the Appalachian Mountain
catchments

When it comes to slow flow, spatial patterns of dominant
processes are, for the most part, similar to those for fast flow:
snowmelt dominates in northern catchments, replaced by
vegetation effects in southern catchments. Snowmelt is the
most dominant process in north-western catchments (catch-
ments located within circles a, d, e.g., ID). As we move fur-
ther east, vegetation cover increases and phenology appears
to be the dominant process in many northeastern catchments
(circles b, c). Most of the catchments in the Mississippi River
region (circle e) indicate phenology to be the dominant pro-
cess given the considerable vegetation cover and intermedi-
ate rainfall. As in the case of fast flow, phenology is dominant
in Arizona and New Mexico, and these otherwise dry catch-
ments appear to be highly sensitive to vegetation effects (cir-
cle f). The dominant processes in southeastern catchments
for slow flow generation appear to be more diverse than in
the case of fast flow. In this case all four process additions
are sufficiently involved in slow flow generation; their effects
are of a similar order and not one process is most dominant.

4.4 Minimum model complexity for reproduction of
regime curves

Although the full model generated acceptable predictions of
the streamflow regime for all “satisfactory” catchments, es-
pecially outside of the mid-west and south-west (see Fig. 9),
we discovered in the previous section that the importance of
each process addition was not the same everywhere. Some
of the processes are never invoked (i.e., snowmelt in warm
catchments) or could easily be left out in some of the catch-
ments without loss of overall performance (i.e., phenology
in southern catchments where the weather is always warm).
In this section, we want to determine the minimum model
complexity that can generate satisfactory predictions, includ-
ing all processes that are deemed essential to reproduce the
regime curve to reveal and concentrate on the most neces-
sary processes in those catchments. In some catchments this
is obvious; for example, snowmelt is clearly not needed in
southern catchments. In many other catchments, this is not
so self-evident, and we can only determine this through care-
ful quantitative assessment.

Once again we use the AIC to measure model perfor-
mance. However, this time we apply the optimized param-
eter sets for the full model repeatedly to the 15 possible
model structures (including one Level 0 model (i.e., the base
model), four Level 1 models, six combinations of Level 2
models, and four combinations of Level 3 models). In each
case we estimate the AIC of the total flow predictions for
each of the 15 models. Starting from the base model (M0),
we compare the AIC at every modeling step with the AIC of
the full model (AIC4): if the AIC of the base model (AIC0)
is smaller than that of AIC4, then we can say that the base
model is adequate to generate satisfactory predictions. Oth-
erwise, we continue to the Level 1 model (M1) and after com-
paring AIC1 with AIC4, if none of the M1 models can reduce
AIC from AIC4, we continue to the Level 2 models, and so
on. This comparative assessment comes to an end when we
arrive at model structure that produces the smallest AIC.

Since interception and phenology are both vegetation ef-
fects, to reduce the number of models for presentational pur-
poses (i.e., to obtain a clearer picture), we combine inter-
ception and phenology into a single category of “vegetation
effects”. In this way half of the model classes are eliminated,
with only 8 remaining model groups. Figure 11 presents the
results of this analysis, displaying regional patterns of needed
model complexity.

One can see in Fig. 11 that the base model is sufficient for
the west coast catchments as well as the southeastern catch-
ments in Florida (circles a, i) where the climate is humid
and seasonality is strong. Consistent with what was found
in the case of the dominant process for fast and slow flows
(Fig. 10), snowmelt is again found to be important in many
northern catchments (circles b, c, d, e). Most of the north-
western mountainous catchments (circle b) need the base
model plus snowmelt only, although some indicate the need
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Fig. 11. The needed process complexity for catchments that pro-
duced satisfactory simulation performance. The circled areas repre-
sent regions of process similarity.

to include vegetation effects and also subsurface-influenced
fast flow (presumably reflecting the presence of thin soils and
substantial vegetation cover). Moving further east, both snow
and vegetation effects are found to be necessary (circles c, d).
This is again consistent with the dominant processes iden-
tified for fast and slow flow (Fig. 10), where both phenol-
ogy and snow were seen to be equally important. On the east
coast (circle e), not only vegetation and snow, but also sub-
surface induced fast flow is found to be necessary (reflecting
the occurrence of saturation excess streamflow). In southern
catchments (circles h, f, g), snow is obviously not needed, but
vegetation effects and subsurface-influenced fast flow must
be accounted for. In North Carolina (circle g), vegetation ef-
fects are seen as the only addition needed, while both veg-
etation and subsurface-influenced fast flow are found to be
needed in Georgia and Missouri (circle f).

4.5 Mapping the model process classes

The results from the model performance assessments pre-
sented in the previous sections, especially those presented
in Figs. 10 and 11, can now be synthesized to develop
broad classifications regarding dominant processes underpin-
ning regional patterns of the variation of streamflow regimes
across the continental United States. The results are pre-
sented in Fig. 12, along with the cluster plot of the observed
flow regime curves, to demonstrate this regional and func-
tional hydrological similarity. Although these results must be
looked at with some caution, considering that they are based
on analysis of the 152 satisfactory catchments, the broad gen-
eralizations presented in Fig. 12 can serve as the founda-
tion or even motivation for further detailed data analyses and
modeling investigations.

The results shown in Fig. 12 indicate, firstly, that the base
model is sufficient to capture the regime curve in western and

Fig. 12. Conceptual map of the spatial distribution of the control-
ling processes and the regime curve clusters: “B” refers to the base
model; “S” refers to snowmelt; “V” denotes vegetation impact (phe-
nology and/or interception); “G” stands for subsurface-influenced
fast flow; and “Human Impacted” means with strong anthropogenic
activity impact.

south-eastern catchments where seasonality dominates. In
north-western mountainous catchments, such as in Idaho, the
addition of snowmelt to the base model is sufficient to cap-
ture the shorter duration high flows occurring in late spring
and early summer. Going west to east in the northern hu-
mid/cold regions, seasonality of precipitation decreases, veg-
etation cover becomes denser, and models must capture both
snowmelt and vegetation effects, as well as the possibility of
saturation excess overland flow. Moving north to south (in
the east), the importance of snowmelt decreases, and only
vegetation effects and saturation excess streamflow remain
important. As one approaches Florida, once again the base
model appears to be sufficient. As one moves east to west
from Florida, catchments become drier, with much reduced
streamflow, and prediction of regime behavior becomes in-
creasingly difficult with simple lumped models, until one
reaches Southern California, where again the base model ap-
pears sufficient due to the out-of-phase seasonality experi-
enced there.

Figure 12 also summarizes the main drivers of the regional
patterns of dominant processes and needed model complex-
ity. In broad terms, seasonality increases east to west, while
temperature and climate aridity increase north to south and
phenology decreases north to south. There are exceptions
to these trends as well. For example, the extreme south-
east experiences strong seasonality, likely due in part to the
influence of hurricanes as well as close proximity to two
large bodies of water – the Gulf of Mexico and the Atlantic
Ocean. Likewise, the north-west (e.g., Washington State) is
warmer than would be expected for such northern latitudes.
Additional features that are critical include the occurrence
of precipitation as snow in northern latitudes, and vegetation
cover dynamics (i.e., phenology) in the forested regions in
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Fig. 13. Flow duration curves of nine selected catchments – B, I, P, S, and G indicate the base model and four processes: interception,
phenology, snowmelt, and subsurface-influenced fast flow respectively. Thus, BIPS refers to the Level 3 model: base model with interception,
phenology, and snowmelt.

the north-east and in the Appalachian region. The mid-west
region proved difficult to model due to strong anthropogenic
effects. One key factor that would be expected to have an
impact on the regime behavior is topography, since it can po-
tentially impact both subsurface drainage and saturation ex-
cess overland flow. However, this could not be conclusively
assessed, due to the small number of catchments in key (e.g.,
mountainous) regions with which to carry out detailed com-
parative studies.

The flow regime curve clusters presented in Fig. 12
suggest a regional and functional self-similarity, though
with some variability due to the large numbers of catch-
ments. Generally, in western mountainous catchments with
snowmelt dominance (BS), the flow regime curves tend to
have a sharp peak in late spring and early summer. Mov-
ing east, the flow peak becomes wider and the duration
much longer as vegetation effects and saturation excess flow
come into play (BSGV, BSV), but there is still an obvious
rise in flow during spring. This rise disappears as we move
south (BV) as the snow impact fades and the vegetation sea-
sonal activity enhances the seasonality gently in the semi-
humid and humid catchments. For the Midwestern catch-
ments where the more sophisticated model is required (due
to human impacts), the flow regime curves display more vari-
ance as well as a weak, dual-mode profile. The base model
(B) performs well on the western coast and in Florida, but the
flow profiles are completely different: in the west the flow is

out of phase with potential evaporation while in the south-
east it is in phase. Thus we can see that the seasonality of
flow does share some similarity for catchments within the
same model process class, and these model process classes
do cluster geographically. However, there is still some vari-
ability in the flow regimes within a model process class, as
illustrated by the western coast and the Florida catchments.
A more detailed classification system, such as that developed
by Coopersmith et al. (2012), may be needed to group catch-
ments more accurately.

4.6 From regime curves to flow duration curves

Our work on the regime curves was motivated ultimately by
the quest to understand the physical and process controls of
flow duration curves (FDCs). We have already seen that the
regime curve exhibits considerable variability across the con-
tinental United States. In order to illustrate the process con-
trols on FDCs, we carried out model-based sensitivity analy-
ses. Figure 13 presents the observed FDCs of total flow based
on simulations with the complete model, as well as by four
“reduced” models in which one of the four processes from
the complete model is removed, leaving only three processes.
The parameter set, optimized for the full model, is applied to
all five models.

We first compare the FDCs produced by the full model
against those estimated from the observed record. Although
the full model can predict the RCs reasonably well, the
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prediction of the FDC is not so good. This is to be expected
since a model focused on predicting the regime curves only
cannot be expected to predict well the high and low flows;
therefore, the model needs to be further enhanced to achieve
this.

The results also demonstrate that in some catchments
(WA, MO, and FL) removal of a process does not have
an obvious effect on the FDC. Conversely, for snowmelt-
dominated catchments such as the one in Idaho, the removal
of snowmelt makes the FDC much flatter. This is consistent,
given that snowmelt is the most important process addition in
Idaho. On the other hand, in eastern catchments with dense
vegetation cover (e.g., NY, GA), removal of phenology actu-
ally steepens the FDC. In dry catchments (Southern CA, TX),
only the influence of phenology is recognizable, although
we have learned from the regime curves that the other three
processes are also important. Thus, differences in dominant
processes can contribute to significant differences between
the regime curves, which cannot be easily recognized in the
FDCs because of the strong influence of high flows and low
flows. In general, because of the connection between the RC
and the FDC, seasonality is present in the FDC, though not as
obviously as in the RC, due to the loss of temporal informa-
tion. While the time element is lost in the FDC, information
on extreme values and frequencies, which are averaged out
in the RC, is gained.

5 Discussion and conclusions

The goal of this paper has been to identify the dominant
processes underpinning streamflow regime behavior across
the continental United States. For this reason, we analyzed
rainfall-runoff data from 197 catchments belonging to the
MOPEX dataset. The analyses involved a systematic process
of model development following the downward approach
(Sivapalan et al., 2003); starting with a simple base model,
it is enhanced through the addition of key processes needed
to reproduce the regime curve.

The resulting final (complete) model was then used to per-
form sensitivity studies to (a) decipher the most dominant
process control, and (b) to determine the minimum model
complexity needed to generate a satisfactory reproduction of
the empirical regime curves. The sensitivity analyses were
carried out in opposite directions. In one case, we started
with the base model, and then increased model complexity by
including additional processes one by one until we reached
the final form of the model, all the while monitoring the im-
provement in model performance. In the other case, we start
with the full model and drop processes one by one until we
arrive at the minimum model complexity needed to achieve
satisfactory predictions.

The results revealed interesting regional patterns in the
process controls of the regime curves across the continen-
tal United States, which is also related to Köppen’s climate

classification map. Snowmelt was found to be the most im-
portant process for modeling northwest catchments which
falls in Köppen’s snow steppe climate class (Dsa) for both
fast and slow flows. However, it was not sufficient for slow
flow prediction in cold, north-eastern catchments (the snow,
fully humid, warm summer class, Dfb), where the vegeta-
tion effects take over as most important due to the pres-
ence of significant forest cover. Vegetation effects and the
role of rising water table are found to be significant for fast
flow in the Appalachian and southern catchments. The requi-
site process for modeling cold, mountainous forested catch-
ments is snowmelt; for cold, forested catchments near the
east coast, however, the processes include both snowmelt
and vegetation; the warm, humid catchments in the south-
east with strong seasonality can be easily modeled with the
simple base model (the warm temperate, fully humid, hot
summer class; Cfa), while the warm, very dry catchments in
the south and south-west (Bsk: arid steppe cold arid) require
much more complex models.

The reasons for the regional patterns of process controls
of regime curves across the United States also became clear
through these regional studies. The obvious reasons are sea-
sonality (which increases east to west, with some excep-
tions), aridity (which increases north to south with some
exceptions) as well as temperature (which increases north
to south, again with exceptions due to effects of mountain
topography, and proximity to oceans). As the seasonality
increases from east to west, needed model complexity de-
creases (except in the mid-west due to human interferences);
the same phenomenon is also observed as we go from south
to north with the decrease in aridity; and importance of
snowmelt increases from warm to cold catchments (south to
north).

Despite the understanding gained regarding the process
controls underpinning regional variations of regime curves,
their impact on the shapes of FDCs has been found to be
less strong. Two different processes that occur during differ-
ent times of the year could have a significant effect on the
shape of the regime curve, yet may not significantly affect
the shape of the FDC. However, interesting regional patterns
were seen in both the process controls on the regime curve
determined here, and the empirically determined parameters
of the mixed gamma distribution as applied to the FDC deter-
mined in Cheng et al. (2012). Sorting these catchments into
classes may be a way to provide more explanatory power
for these patterns and process controls, thus motivating the
development of the classification scheme outlined in Coop-
ersmith et al. (2012).
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