4,339 research outputs found
The subdwarf B star SB 290 - A fast rotator on the extreme horizontal branch
Hot subdwarf B stars (sdBs) are evolved core helium-burning stars with very
thin hydrogen envelopes. In order to form an sdB, the progenitor has to lose
almost all of its hydrogen envelope right at the tip of the red giant branch.
In close binary systems, mass transfer to the companion provides the
extraordinary mass loss required for their formation. However, apparently
single sdBs exist as well and their formation is unclear since decades. The
merger of helium white dwarfs leading to an ignition of core helium-burning or
the merger of a helium core and a low mass star during the common envelope
phase have been proposed. Here we report the discovery of SB 290 as the first
apparently single fast rotating sdB star located on the extreme horizontal
branch indicating that those stars may form from mergers.Comment: 5 pages, 4 figures, A&A letters, accepte
Clinical relevance of soluble c-erbB-2 for patients with metastatic breast cancer predicting the response to second-line hormone or chemotherapy
Concentrations of soluble c-erbB-2 were determined in the sera of 64 patients with distant metastasis from advanced breast cancer receiving second-line hormone or chemotherapy in comparison to 35 breast cancer patients without detectable recurrent disease and 17 healthy blood donors. The sera of non-metastatic breast cancer patients contained s-erbB-2 concentrations similar to those of healthy blood donors. Patients with distant metastasis from advanced breast cancer had significantly higher values of s-erbB-2 in comparison to patients with non-disseminated disease (mean: 59.6 vs. 11.6 U/ml; p = 0.022). A significant correlation was observed between s-erbB-2 serum levels and serum LDH concentrations (p < 0.001), levels of alkaline phosphatase (p < 0.001), and the presence of hepatic metastasis (p = 0.001). Time to tumor progression was significantly shorter in patients with s-erbB-2 levels above 40 U/ml (mean: 23.4 vs. 56.7 months; p = 0.002). Furthermore, breast cancer patients with hepatic metastasis and those with elevated s-erbB-2 serum levels above 40 U/ml had limited response to hormone or chemotherapy. Non-responders had significantly higher s-erbB-2 levels (mean: 270.3, range: 42-500 U/ml;) compared with the responder group (mean: 23.1, range: 0-149 U/ml; p < 0.001). Logistic regression analysis indicated that elevated s-erbB-2 serum levels above 40 U/ml independently predicted an unfavorable response to second-line hormone or chemotherapy in patients with advanced metastatic breast cancer. Copyright (C) 2002 S. KargerAG, Basel
Two candidate brown dwarf companions around core helium-burning stars
Hot subdwarf stars of spectral type B (sdBs) are evolved, core helium-burning
objects. The formation of those objects is puzzling, because the progenitor
star has to lose almost its entire hydrogen envelope in the red-giant phase.
Binary interactions have been invoked, but single sdBs exist as well. We report
the discovery of two close hot subdwarf binaries with small radial velocity
amplitudes. Follow-up photometry revealed reflection effects originating from
cool irradiated companions, but no eclipses. The lower mass limits for the
companions of CPD-64481 () and PHL\,457
() are significantly below the stellar mass limit. Hence
they could be brown dwarfs unless the inclination is unfavourable. Two very
similar systems have already been reported. The probability that none of them
is a brown dwarf is very small, 0.02%. Hence we provide further evidence that
substellar companions with masses that low are able to eject a common envelope
and form an sdB star. Furthermore, we find that the properties of the observed
sample of hot subdwarfs in reflection effect binaries is consistent with a
scenario where single sdBs can still be formed via common envelope events, but
their low-mass substellar companions do not survive.Comment: accepted to A&
Low temperature acoustic properties of amorphous silica and the Tunneling Model
Internal friction and speed of sound of a-SiO(2) was measured above 6 mK
using a torsional oscillator at 90 kHz, controlling for thermal decoupling,
non-linear effects, and clamping losses. Strain amplitudes e(A) = 10^{-8} mark
the transition between the linear and non-linear regime. In the linear regime,
excellent agreement with the Tunneling Model was observed for both the internal
friction and speed of sound, with a cut-off energy of E(min) = 6.6 mK. In the
non-linear regime, two different behaviors were observed. Above 10 mK the
behavior was typical for non-linear harmonic oscillators, while below 10 mK a
different behavior was found. Its origin is not understood.Comment: 1 tex file, 6 figure
Feature Nets: behavioural modelling of software product lines
Software product lines (SPL) are diverse systems that are developed using a dual engineering process: (a)family engineering defines the commonality and variability among all members of the SPL, and (b) application engineering derives specific products based on the common foundation combined with a variable selection of features. The number of derivable products in an SPL can thus be exponential in the number of features. This inherent complexity poses two main challenges when it comes to modelling: Firstly, the formalism used for modelling SPLs needs to be modular and scalable. Secondly, it should ensure that all products behave correctly by providing the ability to analyse and verify complex models efficiently. In this paper we propose to integrate an established modelling formalism (Petri nets) with the domain of software product line engineering. To this end we extend Petri nets to Feature Nets. While Petri nets provide a framework for formally modelling and verifying single software systems, Feature Nets offer the same sort of benefits for software product lines. We show how SPLs can be modelled in an incremental, modular fashion using Feature Nets, provide a Feature Nets variant that supports modelling dynamic SPLs, and propose an analysis method for SPL modelled as Feature Nets. By facilitating the construction of a single model that includes the various behaviours exhibited by the products in an SPL, we make a significant step towards efficient and practical quality assurance methods for software product lines
Cavitation of Electrons Bubbles in Liquid Helium Below saturation Pressure
We have used a Hartree-type electron-helium potential together with a density
functional description of liquid He and He to study the explosion of
electron bubbles submitted to a negative pressure. The critical pressure at
which bubbles explode has been determined as a function of temperature. It has
been found that this critical pressure is very close to the pressure at which
liquid helium becomes globally unstable in the presence of electrons. It is
shown that at high temperatures the capillary model overestimates the critical
pressures. We have checked that a commonly used and rather simple
electron-helium interaction yields results very similar to those obtained using
the more accurate Hartree-type interaction. We have estimated that the
crossover temperature for thermal to quantum nucleation of electron bubbles is
very low, of the order of 6 mK for He.Comment: 22 pages, 9 figure
Efficient family-based model checking via variability abstractions
Many software systems are variational: they can be configured to meet diverse sets of requirements. They can produce a (potentially huge) number of related systems, known as products or variants, by systematically reusing common parts. For variational models (variational systems or families of related systems),specialized family-based model checking algorithms allow efficient verification of multiple variants, simultaneously, in a single run. These algorithms, implemented in a tool Snip, scale much better than ``the brute force'' approach, where all individual systems are verified using a single-system model checker, one-by-one. Nevertheless, their computational cost still greatly depends on the number of features and variants. For variational models with a large number of features and variants, the family-based model checking may be too costly or even infeasible.In this work, we address two key problems of family-based model checking. First, we improve scalability by introducing abstractions that simplify variability. Second, we reduce the burden of maintaining specialized family-based model checkers, by showing how the presented variability abstractions can be used to model check variational models using the standard version of (single-system) Spin. The variability abstractions are first defined as Galois connections on semantic domains. We then show how to use them for defining abstract family-based model checking, where a variability model is replaced with an abstract version of it, which preserves the satisfaction of LTL properties. Moreover, given an abstraction, we define a syntactic source-to-source transformation on high-level modelling languages that describe variational models, such that the model checking of the transformed high-level variational model coincides with the abstract model checking of the concrete high-level variational model. This allows the use of Spin with all its accumulated optimizations for efficient verification of variational models without any knowledge about variability. We have implemented the transformations in a prototype tool, and we illustrate the practicality of this method on several case studies
Lattice-mismatch-induced granularity in CoPt-NbN and NbN-CoPt superconductor-ferromagnet heterostructures: Effect of strain
The effect of strain due to lattice mismatch and of ferromagnetic (FM)
exchange field on superconductivity (SC) in NbN-CoPt bilayers is investigated.
Two different bilayer systems with reversed deposition sequence are grown on
MgO (001) single crystals. While robust superconductivity with high critical
temperature (T_c ~ 15.3 K) and narrow transition width DelT_c ~ 0.4 K) is seen
in two types of CoPt-NbN/MgO heterostructures where the magnetic anisotropy of
CoPt is in-plane in one case and out-of-plane in the other, the NbN-CoPt/MgO
system shows markedly suppressed SC response. The reduced SC order parameter of
this system, which manifests itself in Tc, temperature dependence of critical
current density J_c (T), and angular (Phi) variation of flux-flow resistivity
Rho_f is shown to be a signature of the structure of NbN film and not a result
of the exchange field of CoPt. The Rho_f (H,T,Phi) data further suggest that
the domain walls in the CoPt film are of the Neel type and hence do not cause
any flux in the superconducting layer. A small, but distinct increase in the
low-field critical current of the CoPt-NbN couple is seen when the magnetic
layer has perpendicular anisotropy.Comment: 9 figure
Variability Abstraction and Refinement for Game-Based Lifted Model Checking of Full CTL
One of the most promising approaches to fighting the configuration space explosion problem in lifted model checking are variability abstractions. In this work, we define a novel game-based approach for variability-specific abstraction and refinement for lifted model checking of the full CTL, interpreted over 3-valued semantics. We propose a direct algorithm for solving a 3-valued (abstract) lifted model checking game. In case the result of model checking an abstract variability model is indefinite, we suggest a new notion of refinement, which eliminates indefinite results. This provides an iterative incremental variability-specific abstraction and refinement framework, where refinement is applied only where indefinite results exist and definite results from previous iterations are reused. The practicality of this approach is demonstrated on several variability models
- …
