83 research outputs found
A transcription factor code defines nine sensory interneuron subtypes in the mechanosensory area of the spinal cord
Interneurons in the dorsal spinal cord process and relay innocuous and nociceptive somatosensory information from cutaneous receptors that sense touch, temperature and pain. These neurons display a well-defined organization with respect to their afferent innervation. Nociceptive afferents innervate lamina I and II, while cutaneous mechanosensory afferents primarily innervate sensory interneurons that are located in lamina III-IV. In this study, we outline a combinatorial transcription factor code that defines nine different inhibitory and excitatory interneuron populations in laminae III-IV of the postnatal cord. This transcription factor code reveals a high degree of molecular diversity in the neurons that make up laminae III-IV, and it lays the foundation for systematically analyzing and manipulating these different neuronal populations to assess their function. In addition, we find that many of the transcription factors that are expressed in the dorsal spinal cord at early postnatal times continue to be expressed in the adult, raising questions about their function in mature neurons and opening the door to their genetic manipulation in adult animals
Regulation of the Na,K-ATPase Gamma-Subunit FXYD2 by Runx1 and Ret Signaling in Normal and Injured Non-Peptidergic Nociceptive Sensory Neurons
Dorsal root ganglia (DRGs) contain the cell bodies of sensory neurons which relay nociceptive, thermoceptive, mechanoceptive and proprioceptive information from peripheral tissues toward the central nervous system. These neurons establish constant communication with their targets which insures correct maturation and functioning of the somato-sensory nervous system. Interfering with this two-way communication leads to cellular, electrophysiological and molecular modifications that can eventually cause neuropathic conditions. In this study we reveal that FXYD2, which encodes the gamma-subunit of the Na,K-ATPase reported so far to be mainly expressed in the kidney, is induced in the mouse DRGs at postnatal stages where it is restricted specifically to the TrkB-expressing mechanoceptive and Ret-positive/IB4-binding non-peptidergic nociceptive neurons. In non-peptidergic nociceptors, we show that the transcription factor Runx1 controls FXYD2 expression during the maturation of the somato-sensory system, partly through regulation of the tyrosine kinase receptor Ret. Moreover, Ret signaling maintains FXYD2 expression in adults as demonstrated by the axotomy-induced down-regulation of the gene that can be reverted by in vivo delivery of GDNF family ligands. Altogether, these results establish FXYD2 as a specific marker of defined sensory neuron subtypes and a new target of the Ret signaling pathway during normal maturation of the non-peptidergic nociceptive neurons and after sciatic nerve injury
New Gas-Phase Catalytic Oxidative Processes for Desulfurization of Diesel Fuel
An effective gas-phase oxidative desulfurization (ODS) process was proposed. The process was studied in a laboratory reactor with a proprietary catalyst at 300-400 ºС and ambient pressure with model fuels represented by thiophene, dibenzothiophene(DBT) and 4,6-dimethyldibenzothiophene (DMDBT) dissolved in octane, isooctane or toluene. The reactivity of different sulfur containing molecules in ODS was shown to increase in the sequence: thiophene<DBT<DMDBT. The main sulfur containing product of oxidation of these compounds was SO2. During the gas-phase ODS both processes of sulfur species oxidation and processes of their adsorption were observed and studied. Based on the conducted studies, different ODS process designs comprising its integration with adsorption and regeneration processes and with conventional hydrodesulfurization (HDS) process were proposed. One scheme is based on alternating regimes of ODS and catalyst regeneration in two reactors: sulfur is removed from organic feedstock by oxidation and adsorption in one reactor while simultaneous regeneration of the catalyst that has accumulated sulfur compounds takes place in another reactor. Two other schemes are based on joint use of ODS and HDS. The conventional HDS process is most effective for removal of low-boiling sulfur containing compounds reactive with respect to hydrogen, while removal of refractory sulfur compounds, such as DMDBT is more easily achieved by gas phase ODS. Thus the combination of these processes is expected to be most efficient for deep desulfurization of diesel fuel
RET PLCγ Phosphotyrosine Binding Domain Regulates Ca2+ Signaling and Neocortical Neuronal Migration
The receptor tyrosine kinase RET plays an essential role during embryogenesis in regulating cell proliferation, differentiation, and migration. Upon glial cell line-derived neurotrophic factor (GDNF) stimulation, RET can trigger multiple intracellular signaling pathways that in concert activate various downstream effectors. Here we report that the RET receptor induces calcium (Ca2+) signaling and regulates neocortical neuronal progenitor migration through the Phospholipase-C gamma (PLCγ) binding domain Tyr1015. This signaling cascade releases Ca2+ from the endoplasmic reticulum through the inositol 1,4,5-trisphosphate receptor and stimulates phosphorylation of ERK1/2 and CaMKII. A point mutation at Tyr1015 on RET or small interfering RNA gene silencing of PLCγ block the GDNF-induced signaling cascade. Delivery of the RET mutation to neuronal progenitors in the embryonic ventricular zone using in utero electroporation reveal that Tyr1015 is necessary for GDNF-stimulated migration of neurons to the cortical plate. These findings demonstrate a novel RET mediated signaling pathway that elevates cytosolic Ca2+ and modulates neuronal migration in the developing neocortex through the PLCγ binding domain Tyr1015
The Wooster Voice (Wooster, OH), 1949-12-08
Dr. T. Cuyler Young addresses the campus during the annual Wooster Day celebration. Dr. Delbert Lean will give his 40th annual reading of Charles Dickens\u27 Christmas Carol. Plans to build a darkroom for student publications are announced. Additionally, Wooster host the fall conference of the Ohio division of the National Student Association.https://openworks.wooster.edu/voice1941-1950/1204/thumbnail.jp
Control of mechanical pain hypersensitivity in mice through ligand-targeted photoablation of TrkB-positive sensory neurons
Mechanical allodynia is a major symptom of neuropathic pain whereby innocuous touch evokes severe pain. Here we identify a population of peripheral sensory neurons expressing TrkB that are both necessary and sufficient for producing pain from light touch after nerve injury in mice. Mice in which TrkB-Cre-expressing neurons are ablated are less sensitive to the lightest touch under basal conditions, and fail to develop mechanical allodynia in a model of neuropathic pain. Moreover, selective optogenetic activation of these neurons after nerve injury evokes marked nociceptive behavior. Using a phototherapeutic approach based upon BDNF, the ligand for TrkB, we perform molecule-guided laser ablation of these neurons and achieve long-term retraction of TrkB-positive neurons from the skin and pronounced reversal of mechanical allodynia across multiple types of neuropathic pain. Thus we identify the peripheral neurons which transmit pain from light touch and uncover a novel pharmacological strategy for its treatment
The transcription factor c-Maf controls touch receptor development and function.
The sense of touch relies on detection of mechanical stimuli by specialized mechanosensory neurons. The scarcity of molecular data has made it difficult to analyze development of mechanoreceptors and to define the basis of their diversity and function. We show that the transcription factor c-Maf/c-MAF is crucial for mechanosensory function in mice and humans. The development and function of several rapidly adapting mechanoreceptor types are disrupted in c-Maf mutant mice. In particular, Pacinian corpuscles, a type of mechanoreceptor specialized to detect high-frequency vibrations, are severely atrophied. In line with this, sensitivity to high-frequency vibration is reduced in humans carrying a dominant mutation in the c-MAF gene. Thus, our work identifies a key transcription factor specifying development and function of mechanoreceptors and their end organs
- …