106 research outputs found

    Incidence of fracture in adjacent levels in patients treated with balloon kyphoplasty: a review of the literature

    Get PDF
    The available evidence suggests that the treatment of painful vertebral compression fractures (VCFs) secondary to osteoporosis or multiple myeloma, by cement augmentation with balloon kyphoplasty (BK), is both safe and effective. However, there is uncertainty in the literature concerning the potential of the procedure to influence the risk for adjacent segment fracture. The aim of this article is to review the available peer-reviewed literature, regarding adjacent vertebral body fractures after kyphoplasty augmentation

    Cement leakage causes potential thermal injury in vertebroplasty

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Percutaneous vertebroplasty by injecting PMMA bone cement into the fractured vertebrae has been widely accepted in treatment of spinal compression fracture. However, the exothermic polymerization of bone cement may cause osseous or neural tissue injury. This study is thus designed to evaluate the potential risk of thermal damage in percutaneous vertebroplasty.</p> <p>Method</p> <p>Twelve porcine vertebrae were immersed in 37°C saline for the experiment. In the first stage of the study, vertebroplasty without cement leakage (control group, n = 6) was simulated. The anterior cortex, foramen, posterior cortex and the center of the vertebral body were selected for temperature measurement. Parameters including peak temperature and duration above 45°C were recorded. In the second stage, a model (n = 6) simulating bone cement leaking into the spinal canal was designed. The methods for temperature measurement were identical to those used in the first stage.</p> <p>Results</p> <p>In Stage 1 of the study (vertebroplasty of the porcine vertebral body in the absence of cement leakage), the average maximal temperature at the anterior cortex was 42.4 ± 2.2°C; at the neural foramen 39.5 ± 2.1°C; at the posterior cortex 40.0 ± 2.5°C and at the vertebral center, 68.1 ± 3.4°C. The average time interval above 45°C was 0 seconds at the anterior cortex; at the neural foramen, 0 seconds; at the posterior cortex, 0 seconds and at the vertebral center, 223 seconds. Thus, except at the core of the bone cement, temperatures around the vertebral body did not exceed 45°C. In Stage 2 of the study (cement leakage model), the average maximal temperature at the anterior cortex was 42.7 ± 2.4°C; at the neural foramen, 41.1 ± 0.4°C; at the posterior cortex, 59.1 ± 7.6°C and at the vertebral center, 77.3 ± 5.7°C. The average time interval above 45°C at the anterior cortex was 0 seconds; at the neural foramen, 0 seconds; at the posterior cortex, 329.3 seconds and at the vertebral center, 393.2 seconds. Based on these results, temperatures exceeded 45°C at the posterior cortex and at the vertebral center.</p> <p>Conclusions</p> <p>The results indicated that, for bone cement confined within the vertebra, curing temperatures do not directly cause thermal injury to the nearby soft tissue. If bone cement leaks into the spinal canal, the exothermic reaction at the posterior cortex might result in thermal injury to the neural tissue.</p

    Vertebroplasty and kyphoplasty: a comparative review of efficacy and adverse events

    Get PDF
    Vertebroplasty and kyphoplasty have become common surgical techniques for the treatment of vertebral compression fractures. Vertebroplasty involves the percutaneous injection of bone cement into the cancellous bone of a vertebral body with the goals of pain alleviation and preventing further loss of vertebral body height. Kyphoplasty utilizes an inflatable balloon to create a cavity for the cement with the additional potential goals of restoring height and reducing kyphosis. Vertebroplasty and kyphoplasty are effective treatment options for the reduction of pain associated with vertebral body compression fractures. Biomechanical studies demonstrate that kyphoplasty is initially superior for increasing vertebral body height and reducing kyphosis, but these gains are lost with repetitive loading. Complications secondary to extravasation of cement include compression of neural elements and venous embolism. These complications are rare but more common with vertebroplasty. Vertebroplasty and kyphoplasty are both safe and effective procedures for the treatment of vertebral body compression fractures

    Vertebral body stenting: a new method for vertebral augmentation versus kyphoplasty

    Get PDF
    Vertebroplasty and kyphoplasty are well-established minimally invasive treatment options for compression fractures of osteoporotic vertebral bodies. Possible procedural disadvantages, however, include incomplete fracture reduction or a significant loss of reduction after balloon tamp deflation, prior to cement injection. A new procedure called “vertebral body stenting” (VBS) was tested in vitro and compared to kyphoplasty. VBS uses a specially designed catheter-mounted stent which can be implanted and expanded inside the vertebral body. As much as 24 fresh frozen human cadaveric vertebral bodies (T11-L5) were utilized. After creating typical compression fractures, the vertebral bodies were reduced by kyphoplasty (n = 12) or by VBS (n = 12) and then stabilized with PMMA bone cement. Each step of the procedure was performed under fluoroscopic control and analysed quantitatively. Finally, static and dynamic biomechanical tests were performed. A complete initial reduction of the fractured vertebral body height was achieved by both systems. There was a significant loss of reduction after balloon deflation in kyphoplasty compared to VBS, and a significant total height gain by VBS (mean ± SD in %, p < 0.05, demonstrated by: anterior height loss after deflation in relation to preoperative height [kyphoplasty: 11.7 ± 6.2; VBS: 3.7 ± 3.8], and total anterior height gain [kyphoplasty: 8.0 ± 9.4; VBS: 13.3 ± 7.6]). Biomechanical tests showed no significant stiffness and failure load differences between systems. VBS is an innovative technique which allows for the possibly complete reduction of vertebral compression fractures and helps maintain the restored height by means of a stent. The height loss after balloon deflation is significantly decreased by using VBS compared to kyphoplasty, thus offering a new promising option for vertebral augmentation

    Balloon kyphoplasty in malignant spinal fractures: a systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spinal fractures are a common source of morbidity in cancer patients. Balloon Kyphoplasty (BKP) is a minimally invasive procedure designed to stabilize fractures and correct vertebral deformities. We performed a meta-analysis to determine the efficacy and safety of BKP for spinal fractures in cancer patients.</p> <p>Methods</p> <p>We searched several electronic databases up to September 2008 and the reference lists of relevant publications for studies reporting on BKP in patients with spinal fractures secondary to osteolytic metastasis and multiple myeloma. Outcomes sought included pain relief, functional capacity, quality of life, vertebral height, kyphotic angle and adverse events. Studies were assessed for methodological bias, and estimates of effect were calculated using a random-effects model. Potential reasons for heterogeneity were explored.</p> <p>Results</p> <p>The literature search revealed seven relevant studies published from 2003 to 2008, none of which were randomized trials. Analysis of those studies indicated that BKP resulted in less pain and better functional outcomes, and that these effects were maintained up to 2 years post-procedure. While BKP also improved early vertebral height loss and spinal deformity, these effects were not long-term. No serious procedure-related complications were described. Clinically asymptomatic cement leakage occurred in 6% of all treated levels, and new vertebral fractures in 10% of patients. While there is a lack of studies comparing BKP to other interventions, some data suggested that BKP provided similar pain relief as vertebroplasty and a lower cement leakage rate.</p> <p>Conclusion</p> <p>It appears that there is level III evidence showing BKP is a well-tolerated, relatively safe and effective technique that provides early pain relief and improved functional outcomes in patients with painful neoplastic spinal fractures. BKP also provided long-term benefits in terms of pain and disability. However, the methodological quality of the original studies prevents definitive conclusions being drawn. Further investigation into the use of BKP for spinal fractures in cancer patients is warranted.</p

    Efficacy and safety of vertebroplasty for treatment of painful osteoporotic vertebral fractures: a randomised controlled trial [ACTRN012605000079640]

    Get PDF
    Background. Vertebroplasty is a promising but as yet unproven treatment for painful osteoporotic vertebral fractures. It involves radiographic-guided injection of various types of bone cement directly into the vertebral fracture site. Uncontrolled studies and two controlled quasi-experimental before-after studies comparing volunteers who were offered treatment to those who refused it, have suggested an early benefit including rapid pain relief and improved function. Conversely, several uncontrolled studies and one of the controlled before-after studies have also suggested that vertebroplasty may increase the risk of subsequent vertebral fractures, particularly in vertebrae adjacent to treated levels or if cement leakage into the adjacent disc has occurred. As yet, there are no completed randomised controlled trials of vertebroplasty for osteoporotic vertebral fractures. The aims of this participant and outcome assessor-blinded randomised placebo-controlled trial are to i) determine the short-term efficacy and safety (3 months) of vertebroplasty for alleviating pain and improving function for painful osteoporotic vertebral fractures; and ii) determine its medium to longer-term efficacy and safety, particularly the risk of further fracture over 2 years. Design. A double-blind randomised controlled trial of 200 participants with one or two recent painful osteoporotic vertebral fractures. Participants will be stratified by duration of symptoms (< and ≥ 6 weeks), gender and treating radiologist and randomly allocated to either the treatment or placebo. Outcomes will be assessed at baseline, 1 week, 1, 3, 6, 12 and 24 months. Outcome measures include overall, night and rest pain on 10 cm visual analogue scales, quality of life measured by the Assessment of Quality of Life, Osteoporosis Quality of Life and EQ-5D questionnaires; participant perceived recovery on a 7-point ordinal scale ranging from 'a great deal worse' to 'a great deal better'; disability measured by the Roland-Morris Disability Questionnaire; timed 'Up and Go' test; and adverse effects. The presence of new fractures will be assessed by radiographs of the thoracic and lumbar spine performed at 12 and 24 months. Discussion. The results of this trial will be of major international importance and findings will be immediately translatable into clinical practice. Trial registration. Australian Clinical Trial Register # [ACTRN012605000079640]. © 2008 Buchbinder et al; licensee BioMed Central Ltd.Rachelle Buchbinder, Richard H Osborne, Peter R Ebeling, John D Wark, Peter Mitchell, Chris J Wriedt, Lainie Wengier, David Connell, Stephen E Graves, Margaret P Staples and Bridie Murph

    Metastatic Sertoli cell carcinoma of the testis

    No full text
    Metastatic Sertoli cell tumor is a very rare and deadly disease accounting for approximately 1% of all testicular carcinomas. With fewer than 30 cases reported in the literature, there has not been a uniform treatment regimen with good results. Retroperitoneal lymph node dissection, chemotherapy, and radiation therapy in combination appear to offer the best outcome. This report describes the occurrence of this rare tumor in a 38-year-old man 2 years after left orchiectomy
    corecore