2,300 research outputs found
Double layer for hard spheres with an off-center charge
Simulations for the density and potential profiles of the ions in the planar
electrical double layer of a model electrolyte or an ionic liquid are reported.
The ions of a real electrolyte or an ionic liquid are usually not spheres; in
ionic liquids, the cations are molecular ions. In the past, this asymmetry has
been modelled by considering spheres that are asymmetric in size and/or valence
(viz., the primitive model) or by dimer cations that are formed by tangentially
touching spheres. In this paper we consider spherical ions that are asymmetric
in size and mimic the asymmetrical shape through an off-center charge that is
located away from the center of the cation spheres, while the anion charge is
at the center of anion spheres. The various singlet density and potential
profiles are compared to (i) the dimer situation, that is, the constituent
spheres of the dimer cation are tangentially tethered, and (ii) the standard
primitive model. The results reveal the double layer structure to be
substantially impacted especially when the cation is the counterion. As well as
being of intrinsic interest, this off-center charge model may be useful for
theories that consider spherical models and introduce the off-center charge as
a perturbation.Comment: 11 pages, 7 figure
Influence of anisotropic ion shape, asymmetric valency, and electrolyte concentration on structural and thermodynamic properties of an electric double layer
Grand canonical Monte Carlo simulation results are reported for an electric
double layer modelled by a planar charged hard wall, anisotropic shape cations,
and spherical anions at different electrolyte concentrations and asymmetric
valencies. The cations consist of two tangentially tethered hard spheres of the
same diameter, . One sphere is charged while the other is neutral. Spherical
anions are charged hard spheres of diameter . The ion valency asymmetry 1:2
and 2:1 is considered, with the ions being immersed in a solvent mimicked by a
continuum dielectric medium at standard temperature. The simulations are
carried out for the following electrolyte concentrations: 0.1, 1.0 and 2.0 M.
Profiles of the electrode-ion, electrode-neutral sphere singlet distributions,
the average orientation of dimers, and the mean electrostatic potential are
calculated for a given electrode surface charge, , while the contact
electrode potential and the differential capacitance are presented for varying
electrode charge. With an increasing electrolyte concentration, the shape of
differential capacitance curve changes from that with a minimum surrounded by
maxima into that of a distorted single maximum. For a 2:1 electrolyte, the
maximum is located at a small negative value while for 1:2, at a small
positive value.Comment: 10 pages, 6 figure
Human cachexia induces changes in mitochondria, autophagy and apoptosis in the skeletal muscle
Cachexia is a wasting syndrome characterized by the continuous loss of skeletal muscle mass due to imbalance between protein synthesis and degradation, which is related with poor prognosis and compromised quality of life. Dysfunctional mitochondria are associated with lower muscle strength and muscle atrophy in cancer patients, yet poorly described in human cachexia. We herein investigated mitochondrial morphology, autophagy and apoptosis in the skeletal muscle of patients with gastrointestinal cancer-associated cachexia (CC), as compared with a weight-stable cancer group (WSC). CC showed prominent weight loss and increased circulating levels of serum C-reactive protein, lower body mass index and decreased circulating hemoglobin, when compared to WSC. Electron microscopy analysis revealed an increase in intermyofibrillar mitochondrial area in CC, as compared to WSC. Relative gene expression of Fission 1, a protein related to mitochondrial fission, was increased in CC, as compared to WSC. LC3 II, autophagy-related (ATG) 5 and 7 essential proteins for autophagosome formation, presented higher content in the cachectic group. Protein levels of phosphorylated p53 (Ser46), activated caspase 8 (Asp384) and 9 (Asp315) were also increased in the skeletal muscle of CC. Overall, our results demonstrate that human cancer-associated cachexia leads to exacerbated muscle-stress response that may culminate in muscle loss, which is in part due to disruption of mitochondrial morphology, dysfunctional autophagy and increased apoptosis. To the best of our knowledge, this is the first report showing quantitative morphological alterations in skeletal muscle mitochondria in cachectic patients
Comparação entre extratores químicos de fósforo disponível.
Foram comparados três extratos quimicos de fósforo dispon¡vel em um Latossolo Vermelho-Escuro submetido a quatro tratamentos de adubação fosfatada (0, 150 e 450 mg de P/dm3 de solo). Os extratores qu¡micos testados foram: Mehlich 1, Mehlich 3 e resina trocadora de ânions. Entre esses, sobressaiu-se a resina, com maiores coeficientes de correlação entre a matéria seca da parte aérea de plantas de milho e o fósforo acumulado no tecido vegetal e com o fósforo extra¡do do solo. A resina também recuperou maior quantidade de fósforo do solo, além de ter apresentado correlação significativa com os outros extratores.bitstream/item/35785/1/Bol18.pd
Riding a Spiral Wave: Numerical Simulation of Spiral Waves in a Co-Moving Frame of Reference
We describe an approach to numerical simulation of spiral waves dynamics of
large spatial extent, using small computational grids.Comment: 15 pages, 14 figures, as accepted by Phys Rev E 2010/03/2
Percolation Threshold, Fisher Exponent, and Shortest Path Exponent for 4 and 5 Dimensions
We develop a method of constructing percolation clusters that allows us to
build very large clusters using very little computer memory by limiting the
maximum number of sites for which we maintain state information to a number of
the order of the number of sites in the largest chemical shell of the cluster
being created. The memory required to grow a cluster of mass s is of the order
of bytes where ranges from 0.4 for 2-dimensional lattices
to 0.5 for 6- (or higher)-dimensional lattices. We use this method to estimate
, the exponent relating the minimum path to the
Euclidean distance r, for 4D and 5D hypercubic lattices. Analyzing both site
and bond percolation, we find (4D) and
(5D). In order to determine
to high precision, and without bias, it was necessary to
first find precise values for the percolation threshold, :
(4D) and (5D) for site and
(4D) and (5D) for bond
percolation. We also calculate the Fisher exponent, , determined in the
course of calculating the values of : (4D) and
(5D)
Exposing errors related to weak memory in GPU applications
© 2016 ACM.We present the systematic design of a testing environment that uses stressing and fuzzing to reveal errors in GPU applications that arise due to weak memory effects. We evaluate our approach on seven GPUS spanning three NVIDIA architectures, across ten CUDA applications that use fine-grained concurrency. Our results show that applications that rarely or never exhibit errors related to weak memory when executed natively can readily exhibit these errors when executed in our testing environment. Our testing environment also provides a means to help identify the root causes of such errors, and automatically suggests how to insert fences that harden an application against weak memory bugs. To understand the cost of GPU fences, we benchmark applications with fences provided by the hardening strategy as well as a more conservative, sound fencing strategy
Intermediate temperature dynamics of one-dimensional Heisenberg antiferromagnets
We present a general theory for the intermediate temperature (T) properties
of Heisenberg antiferromagnets of spin-S ions on p-leg ladders, valid for 2Sp
even or odd. Following an earlier proposal for 2Sp even (Damle and Sachdev,
cond-mat/9711014), we argue that an integrable, classical, continuum model of a
fixed-length, 3-vector applies over an intermediate temperature range; this
range becomes very wide for moderate and large values of 2Sp. The coupling
constants of the effective model are known exactly in terms of the energy gap
above the ground state (for 2Sp even) or a crossover scale (for 2Sp odd).
Analytic and numeric results for dynamic and transport properties are obtained,
including some exact results for the spin-wave damping. Numerous quantitative
predictions for neutron scattering and NMR experiments are made. A general
discussion on the nature of T>0 transport in integrable systems is also
presented: an exact solution of a toy model proves that diffusion can exist in
integrable systems, provided proper care is taken in approaching the
thermodynamic limit.Comment: 38 pages, including 12 figure
Perception of teachers and dinner-ladies concerning fruits and vegetables consumption by children at schools in the periphery of Rio de Janeiro city, Brazil.
- …
