8,670 research outputs found
Influence of pH and type of myrosinase complex on the products obtained in the myrosinase catalysed hydrolysis of glucosinolates â a MECC study
Environmental conditions, e.g. pH and the presence of Fe2+ are well known factors that influence the product profile of the myrosinase catalysed hydrolysis of glucosinolates. Depending on the plant genera, the species and tissue of origin myrosinase isoenzymes (thioglucohydrolase EC 3.2.1.147) have different characteristics in terms of MW, subunit composition and pI. However, the influence of these parameters on the outcome of glucosinolate hydrolysis has not been traditionally studied, which hinders the full exploitation of the catalytic potential of these enzymes. In the present experiments the effect of myrosinase type on the products obtained in the hydrolysis of glucosibarin was studied by MECC using two B. carinata myrosinase preparations differing on their affinity to the Con A material, Con A 1 (first eluting fractions) and Con A 2 (last eluting fractions). At pH 3 Con A 1 isoenzymes were more active than Con A 2 isoenzymes. At pH 5 and 6.5 Con A 1 isoenzymes produced oxazolidine-2-thione to a higher extent than Con A 2 isoenzymes. The production of nitriles by Con A 1 isoenzymes was not influenced by pH and at pH 5 and 6.5 the amount of nitrile produced by Con A 1 isoenzymes was lower than that produced by Con A 2 isoenzymes. Formation of nitriles requires the presence of two redox equivalents which leads to the release of the sulphur atom from the aglucone. Isothiocyanates and nitriles differ in their bioactivity towards different targets; therefore the possibility for directing the glucosinolate hydrolysis towards the desired compound in a particular situation is of great relevance
Nutritional value of cruciferous oilseed crops in relation to profile of accumulated biomolecules with especial regard to glucosinolates transformation products
Cruciferous oilseed crops accumulate relatively high concentrations of nutritional high quality oil and proteins in their seeds. In addition to these major seed components, their co-occurrence with high concentrations of dietary fibre (DF) and various bioactive components as glucosinolates/glucosinolate products is decisive for the nutritional value of the seed meal or products obtained from it. Depending on structural types and concentration of glucosinolates and glucosinolate derived products, these compounds can be either health beneficial or act as antinutrients. The effects of these components depend, however, strongly on the type of animal and development of the animals fed with the diets based on these compounds. Results from studies based on differently treated and processed seeds and from use of individual isolated seed components included in standard diets are evaluated and treated in relation to literature data as a basis for recommendations of acceptable concentrations of glucosinolates/glucosinolate products in animal diets. A discussion on the relation between these recommendations of acceptable concentrations in feed to different animals and those reported as necessary for plant pathogen control (biofumigation) and health beneficial effects (chemoprotection) is also included
Processing-bioprocessing of oilseed rape in bioenergy production and value added utilization of remaining seed components
Cruciferous oilseed crops accumulate relatively high concentrations of oil, proteins and dietary fibres (DF) in their seeds, in addition to bioactive components as glucosinolates and myrosinase isoenzymes (thioglucohydrolase; EC 3.2.1.147). When mixed in the presence of moisture, myrosinase isoenzymes and associated components transform glucosinolates into various types of products, which reduces the value of the extracted oil and the remaining seed components, as well as producing unwanted environmental effects due to smell and toxicity. This gives a need for special care concerning myrosinase inactivation as the initial step during processing of oilseed rape, including technologies applied for biodiesel/bioenergy production. The myrosinase inactivation is thus a critical processing step, which needs to be performed at conditions with limited negative effects on other seed components, including proteins and glucosinolates. New bioprocessing technologies are now developed at levels that allow technology transfer from laboratory scale through pilot plant to industrial scale. The extraction of glucosinolates from the seed components remaining after oil separation-pressing and/or extraction is technically possible and has proven successful with the use of bioprocessing technologies. This is also the case concerning isolation of active myrosinases. The possibilities therefore exist for extraction and formulation of glucosinolates as ânatural product derivedâ food and plant protection agents. With the great amounts of partly de-oiled rapeseed meal resulting from bioenergy/biodiesel production, the new bioprocessing technologies call thus for attention in relation to environmental friendly production of food (vegetable oil, protein and DF products), feed and other non food products
ICROFS news 2/2012. Newsletter from ICROFS
International organic research theme:
- Organic farming in Canada
- Linking organic knowledge
- Organic greenhouse production research in Canada
- Researhing a limiting and limited nutrient
- Prodctivity and growth in organic value chains (ProGrOV)
- Root carbon input in arable cropping systems
- Green veal is not dark red
- Brief new
Glucosinolate hydrolysis compounds for weed control
Glucosinolates are allelochemicals present in all Brassica plants. Upon hydrolysis by endogenous enzymes they produce a series of biologically active compounds, such as isothiocyanates and their deriva-tives among others. These compounds have marked fungicidal, nematocidal and herbicidal effects and therefore their use as biodegradable natural products for crop protection has attracted much attention in the last years. A number of these compounds, either individually or in combination, were tested against Sinapis alba and Lollium perenne in Petri dishes bio-assays. C50 values as low as 0.7 and 0.2 mM were obtained. This may open the possibility for using glucosinolate hydrolysis products as herbicides
Effective operator formalism for open quantum systems
We present an effective operator formalism for open quantum systems.
Employing perturbation theory and adiabatic elimination of excited states for a
weakly driven system, we derive an effective master equation which reduces the
evolution to the ground-state dynamics. The effective evolution involves a
single effective Hamiltonian and one effective Lindblad operator for each
naturally occurring decay process. Simple expressions are derived for the
effective operators which can be directly applied to reach effective equations
of motion for the ground states. We compare our method with the hitherto
existing concepts for effective interactions and present physical examples for
the application of our formalism, including dissipative state preparation by
engineered decay processes.Comment: 11 pages, 6 figure
Stability and structure of two coupled boson systems in an external field
The lowest adiabatic potential expressed in hyperspherical coordinates is
estimated for two boson systems in an external harmonic trap. Corresponding
conditions for stability are investigated and the related structures are
extracted for zero-range interactions. Strong repulsion between non-identical
particles leads to two new features, respectively when identical particles
attract or repel each other. For repulsion new stable structures arise with
displaced center of masses. For attraction the mean-field stability region is
restricted due to motion of the center of masses
Efficacy of new-generation antidepressants assessed with the Montgomery-Asberg depression rating scale, the gold standard clinician rating scale : a meta-analysis of randomised placebo-controlled trials
It has been claimed that efficacy estimates based on the Hamilton Depression Rating-Scale (HDRS) underestimate antidepressants true treatment effects due to the instrument's poor psychometric properties. The aim of this study is to compare efficacy estimates based on the HDRS with the gold standard procedure, the Montgomery-Asberg Depression Rating-Scale (MADRS)
The Generic, Incommensurate Transition in the two-dimensional Boson Hubbard Model
The generic transition in the boson Hubbard model, occurring at an
incommensurate chemical potential, is studied in the link-current
representation using the recently developed directed geometrical worm
algorithm. We find clear evidence for a multi-peak structure in the energy
distribution for finite lattices, usually indicative of a first order phase
transition. However, this multi-peak structure is shown to disappear in the
thermodynamic limit revealing that the true phase transition is second order.
These findings cast doubts over the conclusion drawn in a number of previous
works considering the relevance of disorder at this transition.Comment: 13 pages, 10 figure
Ammonia emissions from deciduous forest after leaf fall
The understanding of biochemical feedback mechanisms in the climate system is lacking knowledge in relation to bi-directional ammonia (NH3) exchange between natural ecosystems and the atmosphere. We therefore study the atmospheric NH3 fluxes during a 25-day period during autumn 2010 (21 October to 15 November) for the Danish beech forest Lille Bøgeskov to address the hypothesis that NH3 emissions occur from deciduous forests in relation to leaf fall. This is accomplished by using observations of vegetation status, NH3 fluxes and model calculations. Vegetation status was observed using plant area index (PAI) and leaf area index (LAI). NH3 fluxes were measured using the relaxed eddy accumulation (REA) method. The REA-based NH3 concentrations were compared to NH3 denuder measurements. Model calculations of the atmospheric NH3 concentration were obtained with the Danish Ammonia MOdelling System (DAMOS). The relative contribution from the forest components to the atmospheric NH3 flux was assessed using a simple two-layer bi-directional canopy compensation point model. A total of 57.7% of the fluxes measured showed emission and 19.5% showed deposition. A clear tendency of the flux going from deposition of â0.25 Âą 0.30 Îźg NH3-N mâ2 sâ1 to emission of up to 0.67 Âą 0.28 Îźg NH3-N mâ2 sâ1 throughout the measurement period was found. In the leaf fall period (23 October to 8 November), an increase in the atmospheric NH3 concentrations was related to the increasing forest NH3 flux. Following leaf fall, the magnitude and temporal structure of the measured NH3 emission fluxes could be adequately reproduced with the bi-directional resistance model; it suggested the forest ground layer (soil and litter) to be the main contributing component to the NH3 emissions. The modelled concentration from DAMOS fits well the measured concentrations before leaf fall, but during and after leaf fall, the modelled concentrations are too low. The results indicate that the missing contribution to atmospheric NH3 concentration from vegetative surfaces related to leaf fall are of a relatively large magnitude. We therefore conclude that emissions from deciduous forests are important to include in model calculations of atmospheric NH3 for forest ecosystems. Finally, diurnal variations in the measured NH3 concentrations were related to meteorological conditions, forest phenology and the spatial distribution of local anthropogenic NH3 sources. This suggests that an accurate description of ammonia fluxes over forest ecosystems requires a dynamic description of atmospheric and vegetation processes
- âŚ