987 research outputs found
Properties of Random Graphs with Hidden Color
We investigate in some detail a recently suggested general class of ensembles
of sparse undirected random graphs based on a hidden stub-coloring, with or
without the restriction to nondegenerate graphs. The calculability of local and
global structural properties of graphs from the resulting ensembles is
demonstrated. Cluster size statistics are derived with generating function
techniques, yielding a well-defined percolation threshold. Explicit rules are
derived for the enumeration of small subgraphs. Duality and redundancy is
discussed, and subclasses corresponding to commonly studied models are
identified.Comment: 14 pages, LaTeX, no figure
An iterative procedure to obtain inverse response functions for thick-target correction of measured charged-particle spectra
A new method for correcting charged-particle spectra for thick target effects
is described. Starting with a trial function, inverse response functions are
found by an iterative procedure. The variances corresponding to the measured
spectrum are treated similiarly and in parallel. Oscillations of the solution
are avoided by rebinning the data to finer bins during a correction iteration
and back to the original or wider binning after each iteration. This
thick-target correction method has been used for data obtained with the MEDLEY
facility at the The Svedberg Laboratory, Uppsala, Sweden, and is here presented
in detail and demonstrated for two test cases.Comment: 14 pages, 8 figures, submitted to NIM
Analysis of complex contagions in random multiplex networks
We study the diffusion of influence in random multiplex networks where links
can be of different types, and for a given content (e.g., rumor, product,
political view), each link type is associated with a content dependent
parameter in that measures the relative bias type- links
have in spreading this content. In this setting, we propose a linear threshold
model of contagion where nodes switch state if their "perceived" proportion of
active neighbors exceeds a threshold \tau. Namely, a node connected to
active neighbors and inactive neighbors via type- links will turn
active if exceeds its threshold \tau. Under this
model, we obtain the condition, probability and expected size of global
spreading events. Our results extend the existing work on complex contagions in
several directions by i) providing solutions for coupled random networks whose
vertices are neither identical nor disjoint, (ii) highlighting the effect of
content on the dynamics of complex contagions, and (iii) showing that
content-dependent propagation over a multiplex network leads to a subtle
relation between the giant vulnerable component of the graph and the global
cascade condition that is not seen in the existing models in the literature.Comment: Revised 06/08/12. 11 Pages, 3 figure
Complex Probabilities on R^N as Real Probabilities on C^N and an Application to Path Integrals
We establish a necessary and sufficient condition for averages over complex
valued weight functions on R^N to be represented as statistical averages over
real, non-negative probability weights on C^N. Using this result, we show that
many path-integrals for time-ordered expectation values of bosonic degrees of
freedom in real-valued time can be expressed as statistical averages over
ensembles of paths with complex-valued coordinates, and then speculate on
possible consequences of this result for the relation between quantum and
classical mechanics.Comment: 4 pages, 0 figure
A Variational Approach for Minimizing Lennard-Jones Energies
A variational method for computing conformational properties of molecules
with Lennard-Jones potentials for the monomer-monomer interactions is
presented. The approach is tailored to deal with angular degrees of freedom,
{\it rotors}, and consists in the iterative solution of a set of deterministic
equations with annealing in temperature. The singular short-distance behaviour
of the Lennard-Jones potential is adiabatically switched on in order to obtain
stable convergence. As testbeds for the approach two distinct ensembles of
molecules are used, characterized by a roughly dense-packed ore a more
elongated ground state. For the latter, problems are generated from natural
frequencies of occurrence of amino acids and phenomenologically determined
potential parameters; they seem to represent less disorder than was previously
assumed in synthetic protein studies. For the dense-packed problems in
particular, the variational algorithm clearly outperforms a gradient descent
method in terms of minimal energies. Although it cannot compete with a careful
simulating annealing algorithm, the variational approach requires only a tiny
fraction of the computer time. Issues and results when applying the method to
polyelectrolytes at a finite temperature are also briefly discussed.Comment: 14 pages, uuencoded compressed postscript fil
The effect of microstructure on mechanical properties of HVOF sprayed WC-CoCr composite coatings
This study aims for deeper understanding of the composition and phase changes occurring during HVOF spraying of the powder to WC-CoCr coatings. Also, the effect of lamellar microstructure on the mechanical properties is studied. Compositional and microstructural features are studied by means of X-ray diffraction, XRF, FE-SEM and TEM (EDX, EELS). Mechanical properties are mainly studied by different instrumented indentation and nanoindentation techniques. The use of two new fracture parameters, complementing the fracture toughness value of the coating, are proposed and examined. Higher load range indentations are used to measure cross-sectional and surface hardness, elastic modulus and fracture toughness of the coatings. Mechanical properties of individual phases are studied by nanoindentation. To our knowledge this is the first time that the mechanical properties of this amorphous/nanocrystalline matrix are studied. ICP (In-situ Coating Property) sensor, developed for quality control and residual stress evaluation, is also used to measure the elastic modulus and coefficient of thermal expansion (CTE) of the coatings. Abrasion wear resistance of the coatings are studied according to standard ASTM G 65D.
Because of the brittle nature of HVOF coatings, the main focus of this study is in the effects of coating microstructure on fracture toughness, and on crack initiation and propagation resistance. It is shown that even when two similar coatings have equal indentation fracture toughness values, the critical crack initiation loads may be very different. This new parameter is expected to be extremely useful in the evaluation of the coating performance under loading conditions
Complex Langevin Equation and the Many-Fermion Problem
We study the utility of a complex Langevin (CL) equation as an alternative
for the Monte Carlo (MC) procedure in the evaluation of expectation values
occurring in fermionic many-body problems. We find that a CL approach is
natural in cases where non-positive definite probability measures occur, and
remains accurate even when the corresponding MC calculation develops a severe
``sign problem''. While the convergence of CL averages cannot be guaranteed in
principle, we show how convergent results can be obtained in three examples
ranging from simple one-dimensional integrals over quantum mechanical models to
a schematic shell model path integral.Comment: 19 pages, 10 PS figures embedded in tex
- …